Université de Nantes, Mer Molécules Santé, MMS EA 2160, F-44000, Nantes, France.
UMR 7178 CNRS, Institut Pluridisciplinaire Hubert Curien, Faculté de Pharmacie, Université de Strasbourg, F-67401, Illkirch, France.
Anal Chim Acta. 2019 Sep 6;1070:29-42. doi: 10.1016/j.aca.2019.04.038. Epub 2019 Apr 23.
In natural product drug discovery, several strategies have emerged to highlight specifically bioactive compound(s) within complex mixtures (fractions or crude extracts) using metabolomics tools. In this area, a great deal of interest has raised among the scientific community on strategies to link chemical profiles and associated biological data, leading to the new field called "biochemometrics". This article falls into this emerging research by proposing a complete workflow, which was divided into three major steps. The first one consists in the fractionation of the same extract using four different chromatographic stationary phases and appropriated elution conditions to obtain five fractions for each column. The second step corresponds to the acquisition of chemical profiles using HPLC-HRMS analysis, and the biological evaluation of each fraction. The last step evaluates the links between the relative abundances of molecules present in fractions (peak area) and the global bioactivity level observed for each fraction. To this purpose, an original bioinformatics script (encoded with R Studio software) using the combination of four statistical models (Spearman, F-PCA, PLS, PLS-DA) was here developed leading to the generation of a "Super list" of potential bioactive compounds together with a predictive score. This strategy was validated by its application on a marine-derived Penicillium chrysogenum extract exhibiting antiproliferative activity on breast cancer cells (MCF-7 cells). After the three steps of the workflow, one main compound was highlighted as responsible for the bioactivity and identified as ergosterol. Its antiproliferative activity was confirmed with an IC of 0.10 μM on MCF-7 cells. The script efficiency was further demonstrated by comparing the results obtained with a different recently described approach based on NMR profiling and by virtually modifying the data to evaluate the computational tool behaviour. This approach represents a new and efficient tool to tackle some of the bottlenecks in natural product drug discovery programs.
在天然产物药物发现中,已经出现了几种策略来使用代谢组学工具突出复杂混合物(馏分或粗提物)中特定的生物活性化合物。在这个领域中,科学界对将化学特征与相关生物数据联系起来的策略产生了浓厚的兴趣,从而产生了一个新的领域,称为“生化计量学”。本文属于这一新兴研究领域,提出了一个完整的工作流程,该流程分为三个主要步骤。第一步包括使用四种不同的色谱固定相和适当的洗脱条件对同一样品提取物进行馏分分离,以获得每种柱的五个馏分。第二步对应于使用 HPLC-HRMS 分析获得化学特征,并对每个馏分进行生物评价。第三步评估各馏分中存在的分子(峰面积)的相对丰度与各馏分的整体生物活性水平之间的联系。为此,开发了一个原始的生物信息学脚本(使用 R Studio 软件编码),使用四种统计模型(Spearman、F-PCA、PLS、PLS-DA)的组合,生成一个潜在生物活性化合物的“超级列表”,以及一个预测分数。该策略通过将其应用于具有抗乳腺癌细胞(MCF-7 细胞)增殖活性的海洋来源的 Penicillium chrysogenum 提取物得到了验证。在工作流程的三个步骤之后,一个主要化合物被突出显示为负责生物活性,并被鉴定为麦角固醇。其对 MCF-7 细胞的抗增殖活性通过 IC 值为 0.10 μM 得到了证实。该脚本的效率还通过与基于 NMR 分析的最近描述的方法的结果进行比较以及通过虚拟修改数据来评估计算工具的行为得到了进一步证明。该方法代表了一种新的有效的工具,可以解决天然产物药物发现计划中的一些瓶颈问题。