Suppr超能文献

使用无标记 2D 视频系统估计和验证时间步态特征。

Estimation and validation of temporal gait features using a markerless 2D video system.

机构信息

Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal.

KU Leuven, Campus Brugge, Belgium.

出版信息

Comput Methods Programs Biomed. 2019 Jul;175:45-51. doi: 10.1016/j.cmpb.2019.04.002. Epub 2019 Apr 2.

Abstract

BACKGROUND AND OBJECTIVE

Estimation of temporal gait features, such as stance time, swing time and gait cycle time, can be used for clinical evaluations of various patient groups having gait pathologies, such as Parkinson's diseases, neuropathy, hemiplegia and diplegia. Most clinical laboratories employ an optoelectronic motion capture system to acquire such features. However, the operation of these systems requires specially trained operators, a controlled environment and attaching reflective markers to the patient's body. To allow the estimation of the same features in a daily life setting, this paper presents a novel vision based system whose operation does not require the presence of skilled technicians or markers and uses a single 2D camera.

METHOD

The proposed system takes as input a 2D video, computes the silhouettes of the walking person, and then estimates key biomedical gait indicators, such as the initial foot contact with the ground and the toe off instants, from which several other temporal gait features can be derived.

RESULTS

The proposed system is tested on two datasets: (i) a public gait dataset made available by CASIA, which contains 20 users, with 4 sequences per user; and (ii) a dataset acquired simultaneously by a marker-based optoelectronic motion capture system and a simple 2D video camera, containing 10 users, with 5 sequences per user. For the CASIA gait dataset A the relevant temporal biomedical gait indicators were manually annotated, and the proposed automated video analysis system achieved an accuracy of 99% on their identification. It was able to obtain accurate estimations even on segmented silhouettes where, the state-of-the-art markerless 2D video based systems fail. For the second database, the temporal features obtained by the proposed system achieved an average intra-class correlation coefficient of 0.86, when compared to the ``gold standard" optoelectronic motion capture system.

CONCLUSIONS

The proposed markerless 2D video based system can be used to evaluate patients' gait without requiring the usage of complex laboratory settings and without the need for physical attachment of sensors/markers to the patients. The good accuracy of the results obtained suggests that the proposed system can be used as an alternative to the optoelectronic motion capture system in non-laboratory environments, which can be enable more regular clinical evaluations.

摘要

背景与目的

对诸如站立时间、摆动时间和步态周期时间等时间步态特征进行估计,可以用于评估患有步态障碍(如帕金森病、神经病、偏瘫和双瘫等)的各种患者群体。大多数临床实验室采用光电运动捕捉系统来获取这些特征。然而,这些系统的操作需要经过专门培训的操作人员、受控环境以及将反射标记物附着在患者身体上。为了允许在日常生活环境中估计相同的特征,本文提出了一种新颖的基于视觉的系统,其操作不需要有技术熟练的技术人员或标记物,并且仅使用单个 2D 摄像机。

方法

所提出的系统以 2D 视频作为输入,计算行走者的轮廓,然后从这些轮廓中估计关键的生物医学步态指标,例如初始脚部与地面接触和脚趾离地时刻,从而可以从这些指标中推导出其他几个时间步态特征。

结果

该系统在两个数据集上进行了测试:(i)由 CASIA 提供的公开步态数据集,其中包含 20 位用户,每位用户有 4 个序列;(ii)同时由基于标记的光电运动捕捉系统和简单的 2D 摄像机采集的数据集,其中包含 10 位用户,每位用户有 5 个序列。对于 CASIA 步态数据集 A,相关的时间生物医学步态指标被手动注释,所提出的自动视频分析系统在其识别方面达到了 99%的准确率。即使在分段轮廓中,它也能够获得准确的估计,而在这些轮廓中,最先进的无标记 2D 视频基于系统会失败。对于第二个数据库,所提出的系统获得的时间特征与“黄金标准”光电运动捕捉系统相比,平均内类相关系数为 0.86。

结论

所提出的无标记 2D 视频系统可用于评估患者的步态,而无需使用复杂的实验室设置,也无需将传感器/标记物物理附接到患者身上。所获得的结果的高精度表明,该系统可以替代光电运动捕捉系统在非实验室环境中使用,从而可以实现更常规的临床评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验