用于化学信息处理的基于儿茶酚的水凝胶
Catechol-Based Hydrogel for Chemical Information Processing.
作者信息
Kim Eunkyoung, Liu Zhengchun, Liu Yi, Bentley William E, Payne Gregory F
机构信息
Institute for Biosystems and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.
Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
出版信息
Biomimetics (Basel). 2017 Jul 3;2(3):11. doi: 10.3390/biomimetics2030011.
Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins) to neurotransmission (e.g., dopamine), and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine). It is well known that catechols are also redox-active and we have observed that biomimetic catechol-modified chitosan films are redox-active and possess interesting molecular electronic properties. In particular, these films can accept, store and donate electrons, and thus offer redox-capacitor capabilities. We are enlisting these capabilities to bridge communication between biology and electronics. Specifically, we are investigating an interactive redox-probing approach to access redox-based chemical information and convert this information into an electrical modality that facilitates analysis by methods from signal processing. In this review, we describe the broad vision and then cite recent examples in which the catechol⁻chitosan redox-capacitor can assist in accessing and understanding chemical information. Further, this redox-capacitor can be coupled with synthetic biology to enhance the power of chemical information processing. Potentially, the progress with this biomimetic catechol⁻chitosan film may even help in understanding how biology uses the redox properties of catechols for redox signaling.
儿茶酚具有多种特性,在生物学中用于执行从粘附(如贻贝蛋白)到神经传递(如多巴胺)等各种功能,模仿生物儿茶酚的能力已产生了重要的新材料(如聚多巴胺)。众所周知,儿茶酚也具有氧化还原活性,我们观察到仿生儿茶酚修饰的壳聚糖薄膜具有氧化还原活性,并具有有趣的分子电子特性。特别是,这些薄膜可以接受、存储和捐赠电子,因此具有氧化还原电容器的能力。我们正在利用这些能力来搭建生物学与电子学之间的沟通桥梁。具体而言,我们正在研究一种交互式氧化还原探测方法,以获取基于氧化还原的化学信息,并将该信息转换为一种电模式,便于通过信号处理方法进行分析。在这篇综述中,我们阐述了总体设想,然后列举了儿茶酚-壳聚糖氧化还原电容器有助于获取和理解化学信息的近期实例。此外,这种氧化还原电容器可以与合成生物学相结合,以增强化学信息处理的能力。这种仿生儿茶酚-壳聚糖薄膜的进展甚至可能有助于理解生物学如何利用儿茶酚的氧化还原特性进行氧化还原信号传导。