Institute for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.
Analyst. 2014 Jan 7;139(1):32-43. doi: 10.1039/c3an01632c. Epub 2013 Oct 30.
It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.
众所周知,氧化还原反应是生物学中能量获取(氧化磷酸化)、免疫防御(氧化爆发)和药物代谢(I 相反应)的基础,但有新的证据表明,氧化还原可能在生物学中发挥更广泛的作用(例如,氧化还原信号)。一个关键的挑战是需要能够简单、快速、无需综合分析方法来探测生物相关氧化还原相互作用的工具。我们提出电化学可能提供这样的工具。在本教程综述中,我们描述了最近使用氧化还原电容器薄膜的研究,该薄膜可用作生物电极界面,可以接受、存储和从电化学和生物学中常用的介体中捐赠电子。具体来说,我们:(i) 描述了这种由儿茶酚和多糖壳聚糖制成的氧化还原电容器的制造过程,(ii) 讨论了电子交换的机制基础,(iii) 说明了这种氧化还原电容器的性质及其促进生物学和电极之间氧化还原通讯的能力,以及 (iv) 提出了利用信号处理策略“提取”氧化还原信息的潜力。我们相信,这些初步研究表明,电化学和信号处理在从生物学中获取“系统水平”氧化还原信息方面具有广泛的可能性。