Sakajo Takashi
Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502, Japan.
Proc Math Phys Eng Sci. 2019 Apr;475(2224):20180666. doi: 10.1098/rspa.2018.0666. Epub 2019 Apr 3.
A steady solution of the incompressible Euler equation on a toroidal surface of major radius and minor radius is provided. Its streamfunction is represented by an exact solution to the modified Liouville equation, , where and denote the Laplace-Beltrami operator and the Gauss curvature of the toroidal surface respectively, and , are real parameters with < 0. This is a generalization of the flows with smooth vorticity distributions owing to Stuart (Stuart 1967 , 417-440. (doi:10.1017/S0022112067000941)) in the plane and Crowdy (Crowdy 2004 , 381-402. (doi:10.1017/S0022112003007043)) on the spherical surface. The flow consists of two point vortices at the innermost and the outermost points of the toroidal surface on the same line of a longitude, and a smooth vorticity distribution centred at their antipodal position. Since the surface of a torus has non-constant curvature and a handle structure that are different geometric features from the plane and the spherical surface, we focus on how these geometric properties of the torus affect the topological flow structures along with the change of the aspect ratio = /. A comparison with the Stuart vortex on the flat torus is also made.
给出了在大半径为 、小半径为 的环形曲面上不可压缩欧拉方程的一个定常解。其流函数由修正刘维尔方程 的精确解表示,其中 和 分别表示环形曲面的拉普拉斯 - 贝尔特拉米算子和高斯曲率,并且 、 是实参数且 < 0。这是平面上斯图尔特(斯图尔特,1967 年,417 - 440。(doi:10.1017/S0022112067000941))以及球面上克劳迪(克劳迪,2004 年,381 - 402。(doi:10.1017/S0022112003007043))所给出的具有光滑涡度分布的流动的推广。该流动由位于环形曲面最内点和最外点且在同一条经度线上的两个点涡以及以它们对映位置为中心的光滑涡度分布组成。由于环面的表面具有与平面和球面不同的非恒定曲率和柄结构,我们关注环面的这些几何性质如何随着纵横比 = / 的变化影响拓扑流动结构。还与扁平环面上的斯图尔特涡进行了比较。