Suppr超能文献

肿瘤起始干细胞的免疫原性:在新型抗癌治疗中的潜在应用

Immunogenicity of Tumor Initiating Stem Cells: Potential Applications in Novel Anticancer Therapy.

作者信息

Khandekar Durga, Amara Suneetha, Tiriveedhi Venkataswarup

机构信息

Department of Biological Sciences, Tennessee State University, Nashville, TN, United States.

Department of Medicine, St. Thomas Hospital-Midtown, Nashville, TN, United States.

出版信息

Front Oncol. 2019 Apr 25;9:315. doi: 10.3389/fonc.2019.00315. eCollection 2019.

Abstract

Tumor initiating stem cells (TISCs) are a subset of tumor cells, which are implicated in cancer relapse and resistance to chemotherapy. The metabolic programs that drive TISC functions are exquisitely unique and finely-tuned by various oncogene-driven transcription factors to facilitate pro-cancerous adaptive challenges. While this change in TISC metabolic machinery allows for the identification of associated molecular targets with diagnostic and prognostic value, these molecules also have a potential immunological application. Recent studies have shown that these TISC-associated molecules have strong antigenic properties enabling naïve CD8+T lymphocytes to differentiate into cytotoxic effector phenotype with anticancer potential. In spite of the current challenges, a detailed understanding in this direction offers an immense immunotherapeutic opportunity. In this review, we highlight the molecular targets that characterize TISCs, the metabolic landscape of TISCs, potential antitumor immune cell activation, and the opportunities and challenges they present in the development of new cancer therapeutics.

摘要

肿瘤起始干细胞(TISCs)是肿瘤细胞的一个亚群,与癌症复发和化疗耐药有关。驱动TISC功能的代谢程序极为独特,并由各种癌基因驱动的转录因子进行精细调控,以应对促癌适应性挑战。虽然TISC代谢机制的这种变化有助于识别具有诊断和预后价值的相关分子靶点,但这些分子也具有潜在的免疫学应用价值。最近的研究表明,这些与TISC相关的分子具有很强的抗原特性,能使初始CD8+T淋巴细胞分化为具有抗癌潜力的细胞毒性效应表型。尽管目前存在挑战,但在这个方向上的深入理解提供了巨大的免疫治疗机会。在这篇综述中,我们重点介绍了表征TISCs的分子靶点、TISCs的代谢格局、潜在的抗肿瘤免疫细胞激活,以及它们在新型癌症治疗药物开发中所带来的机遇和挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb5/6494937/d921b19d3d53/fonc-09-00315-g0001.jpg

相似文献

1
Immunogenicity of Tumor Initiating Stem Cells: Potential Applications in Novel Anticancer Therapy.
Front Oncol. 2019 Apr 25;9:315. doi: 10.3389/fonc.2019.00315. eCollection 2019.
4
Metabolic Barriers to T Cell Function in Tumors.
J Immunol. 2018 Jan 15;200(2):400-407. doi: 10.4049/jimmunol.1701041.
5
Membrane potential differences and GABAA receptor expression in hepatic tumor and non-tumor stem cells.
Can J Physiol Pharmacol. 2014 Jan;92(1):85-91. doi: 10.1139/cjpp-2013-0226. Epub 2013 Nov 1.
6
Metabolic Targets for Improvement of Allogeneic Hematopoietic Stem Cell Transplantation and Graft-vs.-Host Disease.
Front Immunol. 2019 Mar 5;10:295. doi: 10.3389/fimmu.2019.00295. eCollection 2019.
9
Reduction of MHC-I expression limits T-lymphocyte-mediated killing of Cancer-initiating cells.
BMC Cancer. 2018 Apr 26;18(1):469. doi: 10.1186/s12885-018-4389-3.
10
Immunomodulating and Immunoresistance Properties of Cancer-Initiating Cells: Implications for the Clinical Success of Immunotherapy.
Immunol Invest. 2017 Apr;46(3):221-238. doi: 10.1080/08820139.2017.1280051. Epub 2017 Mar 13.

引用本文的文献

1
An update on cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer.
Future Oncol. 2025 Mar;21(6):715-735. doi: 10.1080/14796694.2025.2461443. Epub 2025 Feb 12.
3
The Role of Breast Cancer Stem Cells in Chemoresistance and Metastasis in Triple-Negative Breast Cancer.
Cancers (Basel). 2021 Dec 9;13(24):6209. doi: 10.3390/cancers13246209.
4
Breast cancer vaccines for treatment and prevention.
Breast Cancer Res Treat. 2022 Feb;191(3):481-489. doi: 10.1007/s10549-021-06459-2. Epub 2021 Nov 30.
5
A Regulatory Loop Involving Notch and Wnt Signaling Maintains Leukemia Stem Cells in T-Cell Acute Lymphoblastic Leukemia.
Front Cell Dev Biol. 2021 Jun 11;9:678544. doi: 10.3389/fcell.2021.678544. eCollection 2021.
8
Role of BET Inhibitors in Triple Negative Breast Cancers.
Cancers (Basel). 2020 Mar 25;12(4):784. doi: 10.3390/cancers12040784.

本文引用的文献

3
Update on Tumor Neoantigens and Their Utility: Why It Is Good to Be Different.
Trends Immunol. 2018 Jul;39(7):536-548. doi: 10.1016/j.it.2018.04.005. Epub 2018 May 8.
4
Cancer stem cells (CSCs): metabolic strategies for their identification and eradication.
Biochem J. 2018 May 9;475(9):1611-1634. doi: 10.1042/BCJ20170164.
5
JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance.
Cell Metab. 2018 Jan 9;27(1):136-150.e5. doi: 10.1016/j.cmet.2017.11.001. Epub 2017 Dec 14.
6
Mitochondrial metabolism and cancer.
Cell Res. 2018 Mar;28(3):265-280. doi: 10.1038/cr.2017.155. Epub 2017 Dec 8.
7
Drug Resistance Driven by Cancer Stem Cells and Their Niche.
Int J Mol Sci. 2017 Dec 1;18(12):2574. doi: 10.3390/ijms18122574.
8
Metabolic Plasticity of Stem Cells and Macrophages in Cancer.
Front Immunol. 2017 Aug 9;8:939. doi: 10.3389/fimmu.2017.00939. eCollection 2017.
9
Effective humoral immune response from a H1N1 DNA vaccine delivered to the skin by microneedles coated with PLGA-based cationic nanoparticles.
J Control Release. 2017 Nov 10;265:66-74. doi: 10.1016/j.jconrel.2017.04.027. Epub 2017 Apr 20.
10
The Five Immune Forces Impacting DNA-Based Cancer Immunotherapeutic Strategy.
Int J Mol Sci. 2017 Mar 17;18(3):650. doi: 10.3390/ijms18030650.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验