Martínez-Casado Ruth, Todorović Milica, Mallia Giuseppe, Harrison Nicholas M, Pérez Rubén
Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid, Spain.
Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
Front Chem. 2019 Apr 16;7:220. doi: 10.3389/fchem.2019.00220. eCollection 2019.
Anatase TiO provides photoactivity with high chemical stability at a reasonable cost. Different methods have been used to enhance its photocatalytic activity by creating band gap states through the introduction of oxygen vacancies, hydrogen impurities, or the adorption of phthalocyanines, which are usually employed as organic dyes in dye-sensitized solar cells. Predicting how these interactions affect the electronic structure of anatase requires an efficient and robust theory. In order to document the efficiency and accuracy of commonly used approaches we have considered two widely used implementations of density functional theory (DFT), namely the all-electron linear combination of atomic orbitals (AE-LCAO) and the pseudo-potential plane waves (PP-PW) approaches, to calculate the properties of the stoichiometric and defective anatase TiO (101) surface. Hybrid functionals, and in particular HSE, lead to a computed band gap in agreement with that measured by using UV adsorption spectroscopy. When using PBE+U, the gap is underestimated by 20 % but the computed position of defect induced gap states relative to the conduction band minimum (CBM) are found to be in good agreement with those calculated using hybrid functionals. These results allow us to conclude that hybrid functionals based on the use of AE-LCAO provide an efficient and robust approach for predicting trends in the band gap and the position of gap states in large model systems. We extend this analysis to surface adsorption and use the AE-LCAO approach with the hybrid functional HSED3 to study the adsorption of the phthalocyanine HPc on anatase (101). Our results suggest that HPc prefers to be adsorbed on the surface Ti rows of anatase (101), in agreement with that seen in recent STM experiments on rutile (110).
锐钛矿型TiO以合理的成本提供具有高化学稳定性的光活性。已经使用了不同的方法来通过引入氧空位、氢杂质或吸附酞菁来创建带隙态,从而增强其光催化活性,酞菁通常用作染料敏化太阳能电池中的有机染料。预测这些相互作用如何影响锐钛矿的电子结构需要一种高效且稳健的理论。为了证明常用方法的效率和准确性,我们考虑了密度泛函理论(DFT)的两种广泛使用的实现方式,即全电子原子轨道线性组合(AE-LCAO)和赝势平面波(PP-PW)方法,来计算化学计量比和有缺陷的锐钛矿TiO(101)表面的性质。杂化泛函,特别是HSE,导致计算出的带隙与使用紫外吸收光谱测量的结果一致。当使用PBE+U时,带隙被低估了20%,但发现缺陷诱导的带隙态相对于导带最小值(CBM)的计算位置与使用杂化泛函计算的结果非常一致。这些结果使我们能够得出结论,基于AE-LCAO使用的杂化泛函为预测大型模型系统中的带隙趋势和带隙态位置提供了一种高效且稳健的方法。我们将此分析扩展到表面吸附,并使用带有杂化泛函HSED3的AE-LCAO方法来研究酞菁HPc在锐钛矿(101)上的吸附。我们的结果表明,HPc更喜欢吸附在锐钛矿(101)的表面Ti行上,这与最近在金红石(110)上的STM实验结果一致。