Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
Biotechnol J. 2019 Aug;14(8):e1800724. doi: 10.1002/biot.201800724. Epub 2019 Jun 18.
Oxygenase-containing cyanobacteria constitute promising whole-cell biocatalysts for oxyfunctionalization reactions. Photosynthetic water oxidation thereby delivers the required cosubstrates, that is activated reduction equivalents and O , sustainably. A recombinant Synechocystis sp. PCC 6803 strain showing unprecedentedly high photosynthesis-driven oxyfunctionalization activities is developed, and its technical applicability is evaluated. The cells functionally synthesize a heterologous cytochrome P450 monooxygenase enabling cyclohexane hydroxylation. The biocatalyst-specific reaction rate is found to be light-dependent, reaching 26.3 ± 0.6 U g (U = μmol min and cell dry weight [CDW]) at a light intensity of 150 µmol m s . In situ substrate supply via a two-liquid phase system increases the initial specific activity to 39.2 ± 0.7 U g and stabilizes the biotransformation by preventing cell toxification. This results in a tenfold increased specific product yield of 4.5 g g as compared to the single aqueous phase system. Subsequently, the biotransformation is scaled from a shake flask to a 3 L stirred-tank photobioreactor setup. In situ O generation via photosynthetic water oxidation allows a nonaerated process operation, thus circumventing substrate evaporation as the most critical factor limiting the process performance and stability. This study for the first time exemplifies the technical applicability of cyanobacteria for aeration-independent light-driven oxyfunctionalization reactions involving highly toxic and volatile substrates.
含氧化酶的蓝藻是具有前景的全细胞生物催化剂,可用于需氧功能化反应。光合作用水氧化因此提供了所需的共底物,即持续激活的还原当量和 O 。开发了一种具有空前高光合作用驱动需氧功能化活性的重组 Synechocystis sp. PCC 6803 菌株,并评估了其技术适用性。该细胞能够功能性地合成一种异源细胞色素 P450 单加氧酶,从而实现环己烷羟化。发现生物催化剂特有的反应速率依赖于光,在 150 μmol m s 的光强下达到 26.3 ± 0.6 U g (U = μmol min 和细胞干重 [CDW])。通过两相体系原位供应底物可将初始比活性提高到 39.2 ± 0.7 U g ,并通过防止细胞中毒来稳定生物转化。与单相水体系相比,这导致特定产物收率提高了十倍,达到 4.5 g g 。随后,将生物转化从摇瓶扩大到 3 L 搅拌槽光生物反应器装置。通过光合作用水氧化原位生成 O ,允许非充气过程操作,从而避免了作为限制过程性能和稳定性的最关键因素的底物蒸发。本研究首次例证了蓝藻在涉及高毒性和挥发性底物的无需通气的光驱动需氧功能化反应中的技术适用性。