Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
Chembiochem. 2024 Jan 15;25(2):e202300475. doi: 10.1002/cbic.202300475. Epub 2023 Nov 30.
Phototrophic microorganisms, like cyanobacteria, are gaining attention as host organisms for biocatalytic processes with light as energy source and water as electron source. Redox enzymes, especially oxygenases, can profit from in-situ supply of co-substrates, i. e., reduction equivalents and O , by the photosynthetic light reaction. The electron transfer downstream of PS I to heterologous electron consuming enzymes in principle can involve NADPH, NADH, and/or ferredoxin, whereas most direct and efficient transfer is desirable. Here, we use the model organism Synechocystis sp. PCC 6803 to investigate, to what extent host and/or heterologous constituents are involved in electron transfer to a heterologous cytochrome P450 monooxygenase from Acidovorax sp. CHX100. Interestingly, in this highly active light-fueled cycloalkane hydroxylating biocatalyst, host-intrinsic enzymes were found capable of completely substituting the function of the Acidovorax ferredoxin reductase. To a certain extent (20 %), this also was true for the Acidovorax ferredoxin. These results indicate the presence of a versatile set of electron carriers in cyanobacteria, enabling efficient and direct coupling of electron consuming reactions to photosynthetic water oxidation. This will both simplify and promote the use of phototrophic microorganisms for sustainable production processes.
光养微生物,如蓝细菌,正作为生物催化过程的宿主生物而受到关注,这些过程以光作为能源,以水作为电子源。氧化还原酶,特别是加氧酶,可以从光合作用的光反应中受益于原位供应共底物,即还原当量和 O 。原则上,PSI 下游的电子转移可以涉及 NADPH、NADH 和/或铁氧还蛋白,但大多数直接和有效的转移是可取的。在这里,我们使用模式生物集胞藻 PCC 6803 来研究,在多大程度上宿主和/或异源成分参与了电子向来自 Acidovorax sp. CHX100 的异源细胞色素 P450 单加氧酶的转移。有趣的是,在这个高度活跃的光驱动环烷烃羟化生物催化剂中,发现宿主内在的酶能够完全替代 Acidovorax 铁氧还蛋白还原酶的功能。在一定程度上(20%),这对 Acidovorax 铁氧还蛋白也是如此。这些结果表明,蓝细菌中存在一组多功能电子载体,能够有效地将电子消耗反应直接耦合到光合作用的水氧化中。这将简化和促进光养微生物在可持续生产过程中的应用。