Suppr超能文献

用于高能量密度非对称超级电容器的“一用俱全”策略:设计缺氧三壳层MnO和空心FeO微立方体

"One-for-All" strategy to design oxygen-deficient triple-shelled MnO and hollow FeO microcubes for high energy density asymmetric supercapacitors.

作者信息

Jia Henan, Liang Haoyan, Wang Zhaoyue, Li Chun, Zheng Xiaohang, Cai Yifei, Qi Junlei, Cao Jian, Feng Jicai, Fei Weidong

机构信息

State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.

College of Materials Science and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Dalton Trans. 2019 Jun 28;48(24):8623-8632. doi: 10.1039/c9dt01682a. Epub 2019 May 20.

Abstract

Intrinsically poor conductivity, sluggish ion transfer kinetics, and limited specific area are the three main obstacles that confine the electrochemical performance of metal oxides in supercapacitors. Engineered hollow metal oxide nanostructures can effectively satisfy the increasing power demand of modern electronics. In this work, both triple-shelled MnO and hollow FeO microcubes have been synthesized from a single MnCO template. The oxygen vacancies are introduced in both the positive and negative electrodes through a facile method. The oxygen vacancies can not only improve the conductivity and facilitate ion diffusion but also increase the electrode/electrolyte interfaces and electrochemically active sites. Consequently, both the oxygen-deficient triple-shelled MnO and hollow FeO exhibit larger capacitance and rate capability than the samples without oxygen vacancies. Moreover, due to the matchable specific capacitance and potential window between the positive and negative electrodes, the asymmetric supercapacitor exhibits high specific capacitance (240 F g), excellent energy density of 133 W h kg at 1176 W kg, excellent power density (23 529 W kg at 73 W h kg), and high cycling stability (90.9% after 5000 cycles). This strategy is highly reproducible in oxide-based electrodes, which have the potential to meet the requirements of practical application.

摘要

本征导电性差、离子转移动力学迟缓以及比表面积有限是限制超级电容器中金属氧化物电化学性能的三个主要障碍。设计的中空金属氧化物纳米结构能够有效满足现代电子设备不断增长的功率需求。在这项工作中,已从单一的碳酸锰模板合成了三壳层二氧化锰和中空氧化亚铁微立方体。通过一种简便的方法在正负极中引入了氧空位。氧空位不仅可以提高导电性并促进离子扩散,还能增加电极/电解质界面和电化学活性位点。因此,缺氧的三壳层二氧化锰和中空氧化亚铁均比无氧空位的样品表现出更大的电容和倍率性能。此外,由于正负极之间具有匹配的比电容和电位窗口,不对称超级电容器表现出高比电容(240 F/g)、在1176 W/kg时具有133 W h/kg的优异能量密度、优异的功率密度(在73 W h/kg时为23529 W/kg)以及高循环稳定性(5000次循环后为90.9%)。这种策略在基于氧化物的电极中具有高度可重复性,有潜力满足实际应用的要求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验