School of Electrical and Information Engineering, The University of Sydney, Camperdown, NSW, Australia.
Save Sight Institute, The University of Sydney, 8 Macquarie St, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Australia.
Neuroimage. 2019 Sep;198:44-52. doi: 10.1016/j.neuroimage.2019.05.023. Epub 2019 May 17.
Electrical Impedance Tomography (EIT) has the potential to be able to observe functional tomographic images of neural activity in the brain at millisecond time-scales. Prior modelling and experimental work has shown that EIT is capable of imaging impedance changes from neural depolarisation in rat somatosensory cortex. Here, we investigate the feasibility of EIT for imaging impedance changes using a stereotaxically implanted microelectrode array in the thalamus. Microelectrode array EIT was simulated using an anatomically accurate marmoset brain model. Impedance imaging was validated and detectability estimated using physiological noise recorded from the marmoset visual thalamus. The results suggest that visual-input-driven impedance changes in visual subcortical bodies within 300 μm of the implanted array could be reliably reconstructed and localised, comparable to local field potential measurements. Furthermore, we demonstrated that microelectrode array EIT could reconstruct concurrent activity in multiple subcortical bodies simultaneously.
电阻抗断层成像(EIT)有可能能够以毫秒时间尺度观察大脑中神经活动的功能断层图像。先前的建模和实验工作表明,EIT 能够对大鼠体感皮层的神经去极化引起的阻抗变化进行成像。在这里,我们研究了在丘脑使用立体定向植入的微电极阵列进行 EIT 成像的可行性。使用解剖学上精确的狨猴脑模型模拟了微电极阵列 EIT。使用从狨猴视觉丘脑记录的生理噪声验证了阻抗成像并估计了可检测性。结果表明,在距植入阵列 300μm 以内的视觉下皮层中,视觉输入驱动的阻抗变化可以可靠地重建和定位,与局部场电位测量相当。此外,我们证明了微电极阵列 EIT 可以同时重建多个下皮层结构的并发活动。