Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China.
Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China.
Mil Med Res. 2022 Feb 28;9(1):10. doi: 10.1186/s40779-022-00370-7.
Novel advances in the field of brain imaging have enabled the unprecedented clinical application of various imaging modalities to facilitate disease diagnosis and treatment. Electrical impedance tomography (EIT) is a functional imaging technique that measures the transfer impedances between electrodes on the body surface to estimate the spatial distribution of electrical properties of tissues. EIT offers many advantages over other neuroimaging technologies, which has led to its potential clinical use. This qualitative review provides an overview of the basic principles, algorithms, and system composition of EIT. Recent advances in the field of EIT are discussed in the context of epilepsy, stroke, brain injuries and edema, and other brain diseases. Further, we summarize factors limiting the development of brain EIT and highlight prospects for the field. In epilepsy imaging, there have been advances in EIT imaging depth, from cortical to subcortical regions. In stroke research, a bedside EIT stroke monitoring system has been developed for clinical practice, and data support the role of EIT in multi-modal imaging for diagnosing stroke. Additionally, EIT has been applied to monitor the changes in brain water content associated with cerebral edema, enabling the early identification of brain edema and the evaluation of mannitol dehydration. However, anatomically realistic geometry, inhomogeneity, cranium completeness, anisotropy and skull type, etc., must be considered to improve the accuracy of EIT modeling. Thus, the further establishment of EIT as a mature and routine diagnostic technique will necessitate the accumulation of more supporting evidence.
脑成像领域的新进展使各种成像模式能够以前所未有的临床应用来促进疾病的诊断和治疗。电阻抗断层成像(EIT)是一种功能成像技术,通过测量体表电极之间的传输阻抗来估计组织电特性的空间分布。EIT 比其他神经影像学技术具有许多优势,这使其具有潜在的临床应用。本定性综述概述了 EIT 的基本原理、算法和系统组成。讨论了 EIT 领域的最新进展,包括癫痫、中风、脑损伤和水肿以及其他脑部疾病。此外,我们总结了限制脑 EIT 发展的因素,并强调了该领域的前景。在癫痫成像中,EIT 成像深度已从皮质扩展到皮质下区域。在中风研究中,已经开发出床边 EIT 中风监测系统用于临床实践,数据支持 EIT 在多模态成像中诊断中风的作用。此外,EIT 已应用于监测与脑水肿相关的脑含水量变化,从而能够早期识别脑水肿并评估甘露醇脱水。然而,必须考虑解剖学上逼真的几何形状、非均质性、颅骨完整性、各向异性和颅骨类型等因素,以提高 EIT 建模的准确性。因此,要进一步将 EIT 确立为成熟和常规的诊断技术,还需要积累更多的支持证据。