Suppr超能文献

贝叶斯推理问题中的相变类型学。

Typology of phase transitions in Bayesian inference problems.

作者信息

Ricci-Tersenghi Federico, Semerjian Guilhem, Zdeborová Lenka

机构信息

Diparimento di Fisica, Sapienza Università di Roma, Nanotec CNR, UOS di Roma, and INFN Sezione di Roma 1, Piazzale Aldo Moro 5, 00185 Roma, Italy.

Laboratoire de Physique, Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Université Sorbonne Paris Cité, Paris, France.

出版信息

Phys Rev E. 2019 Apr;99(4-1):042109. doi: 10.1103/PhysRevE.99.042109.

Abstract

Many inference problems undergo phase transitions as a function of the signal-to-noise ratio, a prominent example of this phenomenon being found in the stochastic block model (SBM) that generates a random graph with a hidden community structure. Some of these phase transitions affect the information-theoretic optimal (but possibly computationally expensive) estimation procedure, others concern the behavior of efficient iterative algorithms. A computational gap opens when the phase transitions for these two aspects do not coincide, leading to a hard phase in which optimal inference is computationally challenging. In this paper we refine this description in two ways. From a qualitative perspective, we emphasize the existence of more generic phase diagrams with a hybrid-hard phase, in which it is computationally easy to reach a nontrivial inference accuracy but computationally hard to match the information-theoretic optimal one. We support this discussion by quantitative expansions of the functional cavity equations that describe inference problems on sparse graphs, around their trivial solution. These expansions shed light on the existence of hybrid-hard phases, for a large class of planted constraint satisfaction problems, and on the question of the tightness of the Kesten-Stigum (KS) bound for the associated tree reconstruction problem. Our results show that the instability of the trivial fixed point is not generic evidence for the Bayes optimality of the message-passing algorithms. We clarify in particular the status of the symmetric SBM with four communities and of the tree reconstruction of the associated Potts model: In the assortative (ferromagnetic) case the KS bound is always tight, whereas in the disassortative (antiferromagnetic) case we exhibit an explicit criterion involving the degree distribution that separates a large-degree regime where the KS bound is tight and a low-degree regime where it is not. We also investigate the SBM with two communities of different sizes, also known as the asymmetric Ising model, and describe quantitatively its computational gap as a function of its asymmetry, as well as a version of the SBM with two groups of q_{1} and q_{2} communities. We complement this study with numerical simulations of the belief propagation iterative algorithm, confirming that its behavior on large samples is well described by the cavity method.

摘要

许多推理问题会随着信噪比发生相变,这种现象的一个突出例子是随机块模型(SBM),它生成具有隐藏社区结构的随机图。其中一些相变会影响信息理论最优(但可能计算成本高昂)的估计过程,另一些则涉及高效迭代算法的行为。当这两个方面的相变不一致时,就会出现计算差距,从而导致一个困难阶段,在这个阶段最优推理在计算上具有挑战性。在本文中,我们从两个方面对这一描述进行了细化。从定性的角度来看,我们强调存在更一般的相图,其中包含混合困难阶段,在这个阶段,计算上很容易达到非平凡的推理精度,但要达到信息理论最优精度在计算上却很困难。我们通过围绕其平凡解对描述稀疏图上推理问题的泛函腔方程进行定量展开来支持这一讨论。这些展开揭示了一大类植入约束满足问题中混合困难阶段的存在,以及相关树重构问题的凯斯滕 - 斯蒂格姆(KS)界的紧性问题。我们的结果表明,平凡不动点的不稳定性并非消息传递算法贝叶斯最优性的普遍证据。我们特别阐明了具有四个社区的对称SBM以及相关Potts模型的树重构的情况:在 assortative(铁磁)情况下,KS界总是紧的,而在disassortative(反铁磁)情况下,我们给出了一个明确的准则,该准则涉及度分布,它区分了KS界紧的大度 regime和KS界不紧的小度 regime。我们还研究了具有两个不同大小社区的SBM,也称为非对称伊辛模型,并定量描述了其作为不对称性函数的计算差距,以及具有两组q₁和q₂个社区的SBM版本。我们用信念传播迭代算法的数值模拟对这项研究进行补充,证实了其在大样本上的行为可以用腔方法很好地描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验