Suppr超能文献

在稀疏网络模块检测中的推断和相变。

Inference and phase transitions in the detection of modules in sparse networks.

机构信息

Université Paris-Sud, LPTMS, UMR, Orsay, France.

出版信息

Phys Rev Lett. 2011 Aug 5;107(6):065701. doi: 10.1103/PhysRevLett.107.065701. Epub 2011 Aug 2.

Abstract

We present an asymptotically exact analysis of the problem of detecting communities in sparse random networks generated by stochastic block models. Using the cavity method of statistical physics and its relationship to belief propagation, we unveil a phase transition from a regime where we can infer the correct group assignments of the nodes to one where these groups are undetectable. Our approach yields an optimal inference algorithm for detecting modules, including both assortative and disassortative functional modules, assessing their significance, and learning the parameters of the underlying block model. Our algorithm is scalable and applicable to real-world networks, as long as they are well described by the block model.

摘要

我们提出了一种对由随机块模型生成的稀疏随机网络中的社区检测问题进行渐近精确分析的方法。利用统计物理学的腔方法及其与置信传播的关系,我们揭示了一个从可以推断节点的正确分组分配到这些分组无法检测的状态的相变。我们的方法为检测模块(包括聚类和去聚类功能模块)提供了一种最优的推断算法,包括评估其显著性和学习基础块模型的参数。只要网络可以很好地用块模型来描述,我们的算法就是可扩展的,并且适用于真实网络。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验