Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, Kassel, Germany.
Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany.
Integr Comp Biol. 2019 Dec 1;59(6):1690-1699. doi: 10.1093/icb/icz048.
Many organisms have evolved a capacity to form biopolymeric fibers outside their bodies for functions such as defense, prey capture, attachment, and protection. In particular, the adhesive capture slime of onychophorans (velvet worms) is remarkable for its ability to rapidly form stiff fibers through mechanical drawing. Notably, fibers that are formed ex vivo from extracted slime can be dissolved in water and new fibers can be drawn from the solution, indicating that fiber formation is encoded in the biomolecules that comprise the slime. This review highlights recent findings on the biochemical and physicochemical principles guiding this circular process in the Australian onychophoran Euperipatoides rowelli. A multiscale cross-disciplinary approach utilizing techniques from biology, biochemistry, physical chemistry, and materials science has revealed that the slime is a concentrated emulsion of nanodroplets comprised primarily of proteins, stabilized via electrostatic interactions, possibly in a coacervate phase. Upon mechanical agitation, droplets coalesce, leading to spontaneous self-assembly and fibrillation of proteins-a completely reversible process. Recent investigations highlight the importance of subtle transitions in protein structure and charge balance. These findings have clear relevance for better understanding this adaptive prey capture behavior and providing inspiration toward sustainable polymer processing.
许多生物已经进化出在体外形成生物聚合纤维的能力,用于防御、捕食、附着和保护等功能。特别是有爪动物(缨尾目昆虫)的粘性捕获黏液因其能够通过机械拉伸迅速形成坚硬的纤维而引人注目。值得注意的是,从提取的黏液中体外形成的纤维可以溶解在水中,并且可以从溶液中拉出新的纤维,这表明纤维的形成是由构成黏液的生物分子编码的。这篇综述强调了最近在指导澳大利亚有爪动物 Euperipatoides rowelli 中这一循环过程的生物化学和物理化学原理方面的发现。利用生物学、生物化学、物理化学和材料科学的多尺度跨学科方法揭示了黏液是由主要由蛋白质组成的纳米液滴的浓缩乳液,通过静电相互作用稳定,可能处于凝聚相。在机械搅拌下,液滴聚结,导致蛋白质的自发自组装和原纤维形成——这是一个完全可逆的过程。最近的研究强调了蛋白质结构和电荷平衡的微妙转变的重要性。这些发现对更好地理解这种适应性捕食行为具有明确的意义,并为可持续的聚合物加工提供了灵感。