School of Public Health, Oregon Health & Science University and Portland State University, Portland, Oregon.
Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon.
Am J Epidemiol. 2019 Jul 1;188(7):1337-1342. doi: 10.1093/aje/kwz079.
There has been a resurgence in analyses of consecutive pregnancies (or similarly, sibling designs) in perinatal and pediatric epidemiology. These approaches have attractive qualities for estimating associations with complex multifactorial exposures like obesity. In an article appearing in this issue of the Journal, Yu et al. (Am J Epidemiol. 2019;188(7):1328-1336) apply a consecutive-pregnancies approach to characterize the risk of stillbirth among women who develop obesity between pregnancies ("incident obesity"). Working within a causal framework and using parametric and nonparametric estimation techniques, the authors find an increase in stillbirth risk associated with incident obesity. Risk differences varied between 0.4 per 1,000 births (95% confidence interval (CI): 0.1, 0.7) and 6.9 per 1,000 births (95% CI: 3.7, 10.0), and risk ratios ranged from 1.12 (95% CI: 1.02, 1.23) to 2.99 (95% CI: 2.19, 4.08). The strengths of this approach include starting from a clearly defined causal estimand and exploring the sensitivity of parameter estimates to model selection. In this commentary, we put these findings in the broader context of research on obesity and birth outcomes and highlight concerns regarding the generalizability of results derived from within-family designs. We conclude that while causal inference is an important goal, in some instances focusing on formulation of a causal question drives results away from broad applicability.
连续妊娠(或类似的兄弟姐妹设计)分析在围产儿和儿科流行病学中再次兴起。这些方法对于估计肥胖等复杂多因素暴露与关联具有吸引力。在本期《美国流行病学杂志》上发表的一篇文章中,于等人(Am J Epidemiol. 2019;188(7):1328-1336)应用连续妊娠方法来描述妊娠期间发生肥胖(“偶发性肥胖”)的女性中死产的风险。在因果框架内,并使用参数和非参数估计技术,作者发现偶发性肥胖与死产风险增加相关。风险差异在每 1000 例活产中差异为 0.4(95%置信区间(CI):0.1,0.7)和 6.9(95% CI:3.7,10.0),风险比范围为 1.12(95% CI:1.02,1.23)至 2.99(95% CI:2.19,4.08)。该方法的优势包括从明确定义的因果估计量开始,并探索参数估计对模型选择的敏感性。在这篇评论中,我们将这些发现置于肥胖和出生结局研究的更广泛背景下,并强调了对基于家庭设计得出的结果的普遍性的担忧。我们得出的结论是,虽然因果推断是一个重要的目标,但在某些情况下,关注因果问题的表述会使结果远离广泛的适用性。