Institute of Computer Science of the Czech Academy of Sciences, P.O. Box 5, 18207 Prague 8, Czech Republic.
Neural Netw. 2019 Aug;116:208-223. doi: 10.1016/j.neunet.2019.04.019. Epub 2019 May 20.
It has been known for discrete-time recurrent neural networks (NNs) that binary-state models using the Heaviside activation function (with Boolean outputs 0 or 1) are equivalent to finite automata (level 3 in the Chomsky hierarchy), while analog-state NNs with rational weights, employing the saturated-linear function (with real-number outputs in the interval [0,1]), are Turing complete (Chomsky level 0) even for three analog units. However, it is as yet unknown whether there exist subrecursive (i.e. sub-Turing) NN models which occur on Chomsky levels 1 or 2. In this paper, we provide such a model which is a binary-state NN extended with one extra analog unit (1ANN). We achieve a syntactic characterization of languages that are accepted online by 1ANNs in terms of so-called cut languages which are combined in a certain way by usual operations. We employ this characterization for proving that languages accepted by 1ANNs with rational weights are context-sensitive (Chomsky level 1) and we present explicit examples of such languages that are not context-free (i.e. are above Chomsky level 2). In addition, we formulate a sufficient condition when a 1ANN recognizes a regular language (Chomsky level 3) in terms of quasi-periodicity of parameters derived from its real weights, which is satisfied e.g. for rational weights provided that the inverse of the real self-loop weight of the analog unit is a Pisot number.
对于离散时间递归神经网络(NN),使用阶跃激活函数(输出为 0 或 1 的布尔值)的二进制状态模型等效于有限自动机(乔姆斯基层次结构的第 3 级),而具有有理权重的模拟状态 NN,采用饱和线性函数(实数输出在 [0,1] 区间内),即使对于三个模拟单元,也是图灵完备的(乔姆斯基级别 0)。然而,目前尚不清楚是否存在子递归(即次图灵)NN 模型,这些模型出现在乔姆斯基级别 1 或 2 上。在本文中,我们提供了这样一种模型,它是一个具有一个额外模拟单元(1ANN)的二进制状态 NN。我们以所谓的切割语言为工具,对由 1ANN 在线接受的语言进行了语法特征描述,这些语言以某种方式通过常规操作组合在一起。我们利用这种特征描述来证明由有理权重的 1ANN 接受的语言是上下文敏感的(乔姆斯基级别 1),并给出了这种语言的显式示例,这些语言不是上下文无关的(即,高于乔姆斯基级别 2)。此外,我们根据从其实数权重导出的参数的准周期性,以一种形式化的方式给出了 1ANN 识别正则语言(乔姆斯基级别 3)的充分条件,例如,对于有理权重,如果模拟单元的实数自环权重的倒数是皮索特数,则该条件成立。