Suppr超能文献

利用激发发射矩阵结合平行因子和自组织映射分析对绿藻(浒苔)衍生生物炭中荧光溶解有机物的特性进行表征。

Characterization of fluorescent dissolved organic matter from green macroalgae (Ulva prolifera)-derived biochar by excitation-emission matrix combined with parallel factor and self-organizing maps analyses.

机构信息

Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery Institute of Zhejiang Ocean University, Zhoushan 316021, China.

Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.

出版信息

Bioresour Technol. 2019 Sep;287:121471. doi: 10.1016/j.biortech.2019.121471. Epub 2019 May 15.

Abstract

This study investigated the effects of various pyrolysis temperatures and extraction salinities on the fluorescence features of DOM from Ulva prolifera-derived biochar under aseptic conditions using fluorescence excitation-emission matrix (EEM) spectroscopy with parallel factor (PARAFAC) analysis and self-organizing maps (SOM). Four humic-like substances and one protein-like substance were identified by the PARAFAC model. The contents and compositions of PARAFAC components depended more on the pyrolysis temperature than on the extraction salinity. A high pyrolysis temperature could enhance the release of humic-like DOM from biochar. Coupling PARAFAC and SOM facilitates the visualization and interpretation of the relationship between the pyrolysis temperature and the fluorescence properties of DOM. These results are valuable for understanding the effects and processes of macroalgal biochar in the possible environmental and industrial applications.

摘要

本研究采用荧光激发-发射矩阵(EEM)光谱法结合平行因子(PARAFAC)分析和自组织映射图(SOM),在无菌条件下,研究了不同热解温度和提取盐度对浒苔衍生生物炭中 DOM 荧光特性的影响。通过 PARAFAC 模型鉴定出了四种类腐殖质物质和一种类蛋白物质。PARAFAC 组分的含量和组成更多地取决于热解温度,而不是提取盐度。较高的热解温度可以促进生物炭中类腐殖质 DOM 的释放。PARAFAC 和 SOM 的结合有助于直观地理解热解温度与 DOM 荧光性质之间的关系。这些结果对于理解大型海藻生物炭在可能的环境和工业应用中的影响和过程具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验