Suppr超能文献

估计非依从性的整群随机试验中群组水平的局部平均处理效应。

Estimating cluster-level local average treatment effects in cluster randomised trials with non-adherence.

机构信息

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, UK.

Faculty of Population Health Sciences, UCL GOS Institute of Child Health, UK.

出版信息

Stat Methods Med Res. 2020 Mar;29(3):911-933. doi: 10.1177/0962280219849613. Epub 2019 May 24.

Abstract

Non-adherence to assigned treatment is a common issue in cluster randomised trials. In these settings, the efficacy estimand may also be of interest. Many methodological contributions in recent years have advocated using instrumental variables to identify and estimate the local average treatment effect. However, the clustered nature of randomisation in cluster randomised trials adds to the complexity of such analyses. In this paper, we show that the local average treatment effect can be estimated via two-stage least squares regression using cluster-level summaries of the outcome and treatment received under certain assumptions. We propose the use of baseline variables to adjust the cluster-level summaries before performing two-stage least squares in order to improve efficiency. Implementation needs to account for the reduced sample size, as well as the possible heteroscedasticity, to obtain valid inferences. Simulations are used to assess the performance of two-stage least squares of cluster-level summaries under cluster-level or individual-level non-adherence, with and without weighting and robust standard errors. The impact of adjusting for baseline covariates and of appropriate degrees of freedom correction for inference is also explored. The methods are then illustrated by re-analysing a cluster randomised trial carried out in a specific UK primary care setting. Two-stage least squares estimation using cluster-level summaries provides estimates with small to negligible bias and coverage close to nominal level, provided the appropriate small sample degrees of freedom correction and robust standard errors are used for inference.

摘要

不遵守既定治疗方案是集群随机试验中的一个常见问题。在这些环境下,疗效估计量也可能引起关注。近年来,许多方法学的贡献都主张使用工具变量来识别和估计局部平均治疗效果。然而,集群随机试验中随机分组的集群性质增加了此类分析的复杂性。在本文中,我们展示了在某些假设下,可以通过使用两阶段最小二乘法回归,利用结局和治疗的集群水平汇总来估计局部平均治疗效果。我们建议在进行两阶段最小二乘法之前,使用基线变量调整集群水平汇总,以提高效率。实施需要考虑到样本量减少,以及可能存在的异方差性,以获得有效的推断。模拟用于评估在集群水平或个体水平不依从情况下,使用和不使用加权和稳健标准误差的集群水平汇总的两阶段最小二乘法的性能。还探讨了调整基线协变量和适当自由度校正对推断的影响。然后,通过重新分析在特定英国初级保健环境中进行的集群随机试验来说明这些方法。使用集群水平汇总的两阶段最小二乘法估计提供了具有小到可忽略偏差和接近名义水平的覆盖范围的估计,前提是使用适当的小样本自由度校正和稳健标准误差进行推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验