Suppr超能文献

Binding MOAD(所有数据库之母)更新:多靶标药物发现工具及其在药物重定位中的应用。

Updates to Binding MOAD (Mother of All Databases): Polypharmacology Tools and Their Utility in Drug Repurposing.

机构信息

Department of Medicinal Chemistry, University of Michigan-Ann Arbor, 428 Church Street, Ann Arbor, MI 48109-1065, USA.

Department of Medicinal Chemistry, University of Michigan-Ann Arbor, 428 Church Street, Ann Arbor, MI 48109-1065, USA.

出版信息

J Mol Biol. 2019 Jun 14;431(13):2423-2433. doi: 10.1016/j.jmb.2019.05.024. Epub 2019 May 22.

Abstract

The goal of Binding MOAD is to provide users with a data set focused on high-quality x-ray crystal structures that have been solved with biologically relevant ligands bound. Where available, experimental binding affinities (K, K, K, IC) are provided from the primary literature of the crystal structure. The database has been updated regularly since 2005, and this most recent update has added nearly 7000 new structures (growth of 21%). MOAD currently contains 32,747 structures, composed of 9117 protein families and 16,044 unique ligands. The data are freely available on www.BindingMOAD.org. This paper outlines updates to the data in Binding MOAD as well as improvements made to both the website and its contents. The NGL viewer has been added to improve visualization of the ligands and protein structures. MarvinJS has been implemented, over the outdated MarvinView, to work with JChem for small molecule searching in the database. To add tools for predicting polypharmacology, we have added information about sequence, binding-site, and ligand similarity between entries in the database. A main premise behind polypharmacology is that similar binding sites will bind similar ligands. The large amount of protein-ligand information available in Binding MOAD allows us to compute pairwise ligand and binding-site similarities. Lists of similar ligands and similar binding sites have been added to allow users to identify potential polypharmacology pairs. To show the utility of the polypharmacology data, we detail a few examples from Binding MOAD of drug repurposing targets with their respective similarities.

摘要

Binding MOAD 的目标是为用户提供一个专注于高质量 X 射线晶体结构的数据集,这些晶体结构与结合的生物相关配体一起解决。在可用的情况下,从晶体结构的主要文献中提供实验结合亲和力(K、K、K、IC)。自 2005 年以来,该数据库已定期更新,最近的更新增加了近 7000 个新结构(增长了 21%)。MOAD 目前包含 32,747 个结构,由 9117 个蛋白质家族和 16,044 个独特配体组成。数据可在 www.BindingMOAD.org 上免费获得。本文概述了 Binding MOAD 中数据的更新以及对网站及其内容的改进。已添加 NGL 查看器以改善配体和蛋白质结构的可视化效果。已实现 MarvinJS,取代过时的 MarvinView,以与 JChem 配合在数据库中进行小分子搜索。为添加预测多药理学的工具,我们添加了有关数据库中条目的序列、结合位点和配体相似性的信息。多药理学的主要前提是相似的结合位点将结合相似的配体。Binding MOAD 中提供的大量蛋白质-配体信息使我们能够计算配体和结合位点的成对相似性。已添加相似配体和相似结合位点的列表,以允许用户识别潜在的多药理学对。为了展示多药理学数据的实用性,我们详细介绍了 Binding MOAD 中的几个示例,说明了药物重新定位靶标及其各自的相似性。

相似文献

1
Updates to Binding MOAD (Mother of All Databases): Polypharmacology Tools and Their Utility in Drug Repurposing.
J Mol Biol. 2019 Jun 14;431(13):2423-2433. doi: 10.1016/j.jmb.2019.05.024. Epub 2019 May 22.
3
Exploring protein-ligand recognition with Binding MOAD.
J Mol Graph Model. 2006 May;24(6):414-25. doi: 10.1016/j.jmgm.2005.08.002. Epub 2005 Sep 15.
4
Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures.
Nucleic Acids Res. 2015 Jan;43(Database issue):D465-9. doi: 10.1093/nar/gku1088. Epub 2014 Nov 6.
5
Binding MOAD, a high-quality protein-ligand database.
Nucleic Acids Res. 2008 Jan;36(Database issue):D674-8. doi: 10.1093/nar/gkm911. Epub 2007 Nov 30.
6
MTLD, a Database of Multiple Target Ligands, the Updated Version.
Molecules. 2017 Sep 6;22(9):1375. doi: 10.3390/molecules22091375.
7
Binding MOAD (Mother Of All Databases).
Proteins. 2005 Aug 15;60(3):333-40. doi: 10.1002/prot.20512.
8
Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment.
Prog Biophys Mol Biol. 2014 Nov-Dec;116(2-3):174-86. doi: 10.1016/j.pbiomolbio.2014.05.006. Epub 2014 Jun 9.
9
Identification of Target Associations for Polypharmacology from Analysis of Crystallographic Ligands of the Protein Data Bank.
J Chem Inf Model. 2020 Jan 27;60(1):372-390. doi: 10.1021/acs.jcim.9b00821. Epub 2019 Dec 19.
10
High Impact: The Role of Promiscuous Binding Sites in Polypharmacology.
Molecules. 2019 Jul 10;24(14):2529. doi: 10.3390/molecules24142529.

引用本文的文献

2
Machine learning methods for developments of binding kinetic models in predicting protein-ligand dissociation rate constants.
Smart Mol. 2023 Nov 10;1(3):e20230012. doi: 10.1002/smo.20230012. eCollection 2023 Dec.
3
Predicting Affinity Through Homology (PATH): Interpretable binding affinity prediction with persistent homology.
PLoS Comput Biol. 2025 Jun 27;21(6):e1013216. doi: 10.1371/journal.pcbi.1013216. eCollection 2025 Jun.
5
Comparative evaluation of methods for the prediction of protein-ligand binding sites.
J Cheminform. 2024 Nov 11;16(1):126. doi: 10.1186/s13321-024-00923-z.
7
A review of deep learning methods for ligand based drug virtual screening.
Fundam Res. 2024 Mar 11;4(4):715-737. doi: 10.1016/j.fmre.2024.02.011. eCollection 2024 Jul.
8
FURNA: A database for functional annotations of RNA structures.
PLoS Biol. 2024 Jul 29;22(7):e3002476. doi: 10.1371/journal.pbio.3002476. eCollection 2024 Jul.
9
Addressing docking pose selection with structure-based deep learning: Recent advances, challenges and opportunities.
Comput Struct Biotechnol J. 2024 May 18;23:2141-2151. doi: 10.1016/j.csbj.2024.05.024. eCollection 2024 Dec.
10
Advancing Drug Safety in Drug Development: Bridging Computational Predictions for Enhanced Toxicity Prediction.
Chem Res Toxicol. 2024 Jun 17;37(6):827-849. doi: 10.1021/acs.chemrestox.3c00352. Epub 2024 May 17.

本文引用的文献

1
Web-Based Tools for Polypharmacology Prediction.
Methods Mol Biol. 2019;1888:255-272. doi: 10.1007/978-1-4939-8891-4_15.
3
Computational Drug Repurposing: Current Trends.
Curr Med Chem. 2019;26(28):5389-5409. doi: 10.2174/0929867325666180530100332.
4
eRepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs.
J Mol Biol. 2018 Jul 20;430(15):2266-2273. doi: 10.1016/j.jmb.2017.12.001. Epub 2017 Dec 10.
5
DrugBank 5.0: a major update to the DrugBank database for 2018.
Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
7
The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data.
J Cheminform. 2017 Feb 21;9:11. doi: 10.1186/s13321-017-0199-x. eCollection 2017.
8
Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
Acc Chem Res. 2017 Feb 21;50(2):302-309. doi: 10.1021/acs.accounts.6b00491. Epub 2017 Feb 9.
9
The RCSB protein data bank: integrative view of protein, gene and 3D structural information.
Nucleic Acids Res. 2017 Jan 4;45(D1):D271-D281. doi: 10.1093/nar/gkw1000. Epub 2016 Oct 27.
10
SAnDReS a Computational Tool for Statistical Analysis of Docking Results and Development of Scoring Functions.
Comb Chem High Throughput Screen. 2016;19(10):801-812. doi: 10.2174/1386207319666160927111347.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验