Fakultät für Physik, Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), 85748 Garching bei München, Germany.
Phys Med Biol. 2019 Jul 16;64(14):145016. doi: 10.1088/1361-6560/ab2474.
We present a method to accurately predict image noise in proton computed tomography (pCT) using data generated from a Monte Carlo simulation and a patient or object model that may be generated from a prior x-ray CT image. This enables noise prediction for arbitrary beam fluence settings and, therefore, the application of fluence-modulated pCT (FMpCT), which can achieve prescribed noise targets and may significantly reduce the integral patient dose. We extended an existing Monte Carlo simulation of a prototype pCT scanner to include effects of quenching in the energy detector scintillators and constructed a beam model from experimental tracking data. Simulated noise predictions were compared to experimental data both in the projection domain and in the reconstructed image. Noise prediction agreement between simulated and experimental data in terms of the root-mean-square (RMS) error was better than 7% for a homogeneous water phantom and a sensitometry phantom with tubular inserts. For an anthropomorphic head phantom, modeling the anatomy of a five-year-old child, the RMS error was better than 9% in three evaluated slices. We were able to reproduce subtle noise features near heterogeneities. To demonstrate the feasibility of Monte Carlo simulated noise maps for fluence modulation, we calculated a fluence profile that yields a homogeneous noise level in the image. Unlike for bow-tie filters in x-ray CT this does not require constant fluence at the detector and the shape of the fluence profile is fundamentally different. Using an improved Monte Carlo simulation, we demonstrated the feasibility of using simulated data for accurate image noise prediction for pCT. We believe that the agreement with experimental data is sufficient to enable the future optimization of FMpCT fluence plans to achieve prescribed noise targets in a fluence-modulated acquisition.
我们提出了一种使用蒙特卡罗模拟生成的数据和患者或物体模型(可能由先前的 X 射线 CT 图像生成)准确预测质子计算机断层扫描(pCT)图像噪声的方法。这使得可以针对任意束流强度设置进行噪声预测,因此可以应用强度调制的 pCT(FMpCT),从而实现规定的噪声目标,并可能显著降低患者的总剂量。我们扩展了现有的原型 pCT 扫描仪的蒙特卡罗模拟,以包括能量探测器闪烁体中的猝灭效应,并根据实验跟踪数据构建了束流模型。在投影域和重建图像中,将模拟的噪声预测与实验数据进行了比较。对于同质水模体和带有管状插入物的感光模体,模拟和实验数据之间的均方根(RMS)误差的噪声预测一致性优于 7%。对于具有五岁儿童解剖结构的拟人头部模体,在三个评估切片中 RMS 误差优于 9%。我们能够再现异质附近的细微噪声特征。为了证明蒙特卡罗模拟噪声图用于强度调制的可行性,我们计算了在图像中产生均匀噪声水平的强度分布。与 X 射线 CT 中的蝴蝶结滤波器不同,这不需要在探测器处保持恒定的强度,并且强度分布的形状本质上是不同的。使用改进的蒙特卡罗模拟,我们证明了使用模拟数据进行 pCT 精确图像噪声预测的可行性。我们相信与实验数据的一致性足以实现未来对 FMpCT 强度计划的优化,以在强度调制采集时实现规定的噪声目标。