Suppr超能文献

基于多目标细胞遗传算法的基因调控网络推断。

Inference of gene regulatory networks with multi-objective cellular genetic algorithm.

机构信息

Dept. de Lenguajes y Ciencias de la Computación and Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, ETSI Informática, Campus de Teatinos, Malaga 29071, Spain.

出版信息

Comput Biol Chem. 2019 Jun;80:409-418. doi: 10.1016/j.compbiolchem.2019.05.003. Epub 2019 May 13.

Abstract

Reverse engineering of biochemical networks remains an important open challenge in computational systems biology. The goal of model inference is to, based on time-series gene expression data, obtain the sparse topological structure and parameters that quantitatively understand and reproduce the dynamics of biological systems. In this paper, we propose a multi-objective approach for the inference of S-System structures for Gene Regulatory Networks (GRNs) based on Pareto dominance and Pareto optimality theoretical concepts instead of the conventional single-objective evaluation of Mean Squared Error (MSE). Our motivation is that, using a multi-objective formulation for the GRN, it is possible to optimize the sparse topology of a given GRN as well as the kinetic order and rate constant parameters in a decoupled S-System, yet avoiding the use of additional penalty weights. A flexible and robust Multi-Objective Cellular Evolutionary Algorithm is adapted to perform the tasks of parameter learning and network topology inference for the proposed approach. The resulting software, called MONET, is evaluated on real-based academic and synthetic time-series of gene expression taken from the DREAM3 challenge and the IRMA in vivo datasets. The ability to reproduce biological behavior and robustness to noise is assessed and compared. The results obtained are competitive and indicate that the proposed approach offers advantages over previously used methods. In addition, MONET is able to provide experts with a set of trade-off solutions involving GRNs with different typologies and MSEs.

摘要

生物化学网络的逆向工程仍然是计算系统生物学中的一个重要开放性挑战。模型推断的目标是,根据时间序列基因表达数据,获得稀疏的拓扑结构和参数,以便定量理解和再现生物系统的动力学。在本文中,我们提出了一种基于 Pareto 支配和 Pareto 最优理论概念的用于推断基因调控网络 (GRN) 的 S-系统结构的多目标方法,而不是传统的均方误差 (MSE) 的单一目标评估。我们的动机是,使用 GRN 的多目标公式,可以优化给定 GRN 的稀疏拓扑以及解耦 S-系统中的动力学顺序和速率常数参数,同时避免使用额外的惩罚权重。适应了灵活而强大的多目标细胞进化算法来执行所提出方法的参数学习和网络拓扑推断任务。由此产生的软件称为 MONET,它基于来自 DREAM3 挑战和体内数据集的真实学术和合成基因表达时间序列进行了评估。评估了重现生物学行为的能力和对噪声的鲁棒性,并进行了比较。所获得的结果具有竞争力,表明与先前使用的方法相比,所提出的方法具有优势。此外,MONET 能够为专家提供一组涉及不同拓扑结构和 MSE 的不同类型的 GRN 的折衷解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验