Kumatani Akichika, Miura Chiho, Kuramochi Hirotaka, Ohto Tatsuhiko, Wakisaka Mitsuru, Nagata Yuki, Ida Hiroki, Takahashi Yasufumi, Hu Kailong, Jeong Samuel, Fujita Jun-Ichi, Matsue Tomokazu, Ito Yoshikazu
WPI Advanced Institute for Materials Research (AIMR) Tohoku University Sendai 980-8577 Japan.
Graduate School of Environmental Studies Tohoku University Sendai 980-856 Japan.
Adv Sci (Weinh). 2019 Apr 1;6(10):1900119. doi: 10.1002/advs.201900119. eCollection 2019 May 17.
Carbon-based metal-free catalysts for the hydrogen evolution reaction (HER) are essential for the development of a sustainable hydrogen society. Identification of the active sites in heterogeneous catalysis is key for the rational design of low-cost and efficient catalysts. Here, by fabricating holey graphene with chemically dopants, the atomic-level mechanism for accelerating HER by chemical dopants is unveiled, through elemental mapping with atomistic characterizations, scanning electrochemical cell microscopy (SECCM), and density functional theory (DFT) calculations. It is found that the synergetic effects of two important factors-edge structure of graphene and nitrogen/phosphorous codoping-enhance HER activity. SECCM evidences that graphene edges with chemical dopants are electrochemically very active. Indeed, DFT calculation suggests that the pyridinic nitrogen atom could be the catalytically active sites. The HER activity is enhanced due to phosphorus dopants, because phosphorus dopants promote the charge accumulations on the catalytically active nitrogen atoms. These findings pave a path for engineering the edge structure of graphene in graphene-based catalysts.
用于析氢反应(HER)的碳基金属无催化剂对于可持续氢社会的发展至关重要。确定多相催化中的活性位点是合理设计低成本高效催化剂的关键。在此,通过用化学掺杂剂制备多孔石墨烯,借助具有原子特征的元素映射、扫描电化学细胞显微镜(SECCM)和密度泛函理论(DFT)计算,揭示了化学掺杂剂加速HER的原子级机理。研究发现,石墨烯的边缘结构和氮/磷共掺杂这两个重要因素的协同效应增强了HER活性。SECCM证明,带有化学掺杂剂的石墨烯边缘具有很高的电化学活性。实际上,DFT计算表明吡啶氮原子可能是催化活性位点。由于磷掺杂剂的存在,HER活性得到增强,因为磷掺杂剂促进了催化活性氮原子上的电荷积累。这些发现为在基于石墨烯的催化剂中设计石墨烯的边缘结构铺平了道路。