文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

静态预负荷抑制负荷诱导的骨形成。

Static Preload Inhibits Loading-Induced Bone Formation.

作者信息

Srinivasan Sundar, Balsiger Danica, Huber Phillipe, Ausk Brandon J, Bain Steven D, Gardiner Edith M, Gross Ted S

机构信息

Department of Orthopaedics and Sports Medicine University of Washington Seattle WA USA.

出版信息

JBMR Plus. 2018 Oct 11;3(5):e10087. doi: 10.1002/jbm4.10087. eCollection 2019 May.


DOI:10.1002/jbm4.10087
PMID:31131340
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6524670/
Abstract

Nearly all exogenous loading models of bone adaptation apply dynamic loading superimposed upon a time invariant static preload (SPL) in order to ensure stable, reproducible loading of bone. Given that SPL may alter aspects of bone mechanotransduction (eg, interstitial fluid flow), we hypothesized that SPL inhibits bone formation induced by dynamic loading. As a first test of this hypothesis, we utilized a newly developed device that enables stable dynamic loading of the murine tibia with SPLs ≥ -0.01 N. We subjected the right tibias of BALB/c mice (4-month-old females) to dynamic loading (-3.8 N, 1 Hz, 50 cycles/day, 10 s rest) superimposed upon one of three SPLs: -1.5 N, -0.5 N, or -0.03 N. Mice underwent exogenous loading 3 days/week for 3 weeks. Metaphyseal trabecular bone adaptation (μCT) and midshaft cortical bone formation (dynamic histomorphometry) were assessed following euthanasia (day 22). Ipsilateral tibias of mice loaded with a -1.5-N SPL demonstrated significantly less trabecular bone volume/total volume (BV/TV) than contralateral tibias (-12.9%). In contrast, the same dynamic loading superimposed on a -0.03-N SPL significantly elevated BV/TV versus contralateral tibias (12.3%) and versus the ipsilateral tibias of the other SPL groups (-0.5 N: 46.3%, -1.5 N: 37.2%). At the midshaft, the periosteal bone formation rate (p.BFR) induced when dynamic loading was superimposed on -1.5-N and -0.5-N SPLs was significantly amplified in the -0.03-N SPL group (>200%). These data demonstrate that bone anabolism induced by dynamic loading is markedly inhibited by SPL magnitudes commonly implemented in the literature (ie, -0.5 N, -1.5 N). The inhibitory impact of SPL has not been recognized in bone adaptation models and, as such, SPLs have been neither universally reported nor standardized. Our study therefore identifies a previously unrecognized, potent inhibitor of mechanoresponsiveness that has potentially confounded studies of bone adaptation and translation of insights from our field. © 2018 The Authors. Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

摘要

几乎所有骨适应的外源性加载模型都应用叠加在时间不变的静态预负荷(SPL)上的动态负荷,以确保对骨进行稳定、可重复的加载。鉴于SPL可能会改变骨力传导的某些方面(例如,组织液流动),我们推测SPL会抑制动态负荷诱导的骨形成。作为对这一假设的首次检验,我们使用了一种新开发的装置,该装置能够对小鼠胫骨进行稳定的动态负荷加载,且SPL≥-0.01 N。我们将BALB/c小鼠(4月龄雌性)的右胫骨置于三种SPL之一(-1.5 N、-0.5 N或-0.03 N)上叠加动态负荷(-3.8 N,1 Hz,每天50次循环,休息10 s)。小鼠每周进行3天外源性负荷加载,持续3周。在安乐死(第22天)后评估干骺端小梁骨适应情况(μCT)和骨干皮质骨形成情况(动态组织形态计量学)。加载-1.5 N SPL的小鼠同侧胫骨的小梁骨体积/总体积(BV/TV)明显低于对侧胫骨(-12.9%)。相比之下,叠加在-0.03 N SPL上的相同动态负荷使BV/TV相对于对侧胫骨显著升高(12.3%)以及相对于其他SPL组的同侧胫骨升高(-0.5 N:46.3%;-1.5 N:37.2%)。在骨干处,当动态负荷叠加在-1.5 N和-0.5 N SPL上时诱导的骨膜骨形成率(p.BFR)在-0.03 N SPL组中显著放大(>200%)。这些数据表明,文献中通常采用的SPL大小(即-0.5 N、-1.5 N)会显著抑制动态负荷诱导的骨合成代谢。SPL的抑制作用在骨适应模型中尚未得到认识,因此,SPL既未被普遍报告也未标准化。我们的研究因此确定了一种先前未被认识的、强大的心因性反应抑制剂,它可能混淆了骨适应研究以及我们领域见解的转化。© 2018作者。由Wiley Periodicals, Inc.代表美国骨与矿物质研究学会出版。

相似文献

[1]
Static Preload Inhibits Loading-Induced Bone Formation.

JBMR Plus. 2018-10-11

[2]
Aging diminishes lamellar and woven bone formation induced by tibial compression in adult C57BL/6.

Bone. 2014-8

[3]
Evaluation of loading parameters for murine axial tibial loading: Stimulating cortical bone formation while reducing loading duration.

J Orthop Res. 2018-2

[4]
Beta 2 Adrenergic Receptor Selective Antagonist Enhances Mechanically Stimulated Bone Anabolism in Aged Mice.

JBMR Plus. 2022-12-27

[5]
Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model.

Bone. 2012-10-27

[6]
Protective Effects of Controlled Mechanical Loading of Bone in C57BL6/J Mice Subject to Disuse.

JBMR Plus. 2019-12-27

[7]
Bone mass is preserved and cancellous architecture altered due to cyclic loading of the mouse tibia after orchidectomy.

J Bone Miner Res. 2008-5

[8]
Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading.

Bone. 2006-3

[9]
Isolated Cyclic Loading During Adolescence Improves Tibial Bone Microstructure and Strength at Adulthood.

JBMR Plus. 2020-3-11

[10]
Aged mice have enhanced endocortical response and normal periosteal response compared with young-adult mice following 1 week of axial tibial compression.

J Bone Miner Res. 2010-9

引用本文的文献

[1]
Toward a clear relationship between mechanical signals and bone adaptation.

Mechanobiol Med. 2025-2-1

[2]
Cortical bone adaptation response is region specific, but not peak load dependent: insights from CT image analysis and mechanostat simulations of the mouse tibia loading model.

Biomech Model Mechanobiol. 2024-2

[3]
Using Finite Element Modeling in Bone Mechanoadaptation.

Curr Osteoporos Rep. 2023-4

[4]
Murine Axial Compression Tibial Loading Model to Study Bone Mechanobiology: Implementing the Model and Reporting Results.

J Orthop Res. 2019-10-23

本文引用的文献

[1]
Sclerostin Antibody Augments the Anabolic Bone Formation Response in a Mouse Model of Mechanical Tibial Loading.

J Bone Miner Res. 2017-11-29

[2]
Evaluation of loading parameters for murine axial tibial loading: Stimulating cortical bone formation while reducing loading duration.

J Orthop Res. 2018-2

[3]
Cathepsin K Controls Cortical Bone Formation by Degrading Periostin.

J Bone Miner Res. 2017-7

[4]
A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone.

Bone Res. 2016-9-27

[5]
Revisiting the Debate: Does Exercise Build Strong Bones in the Mature and Senescent Skeleton?

Front Physiol. 2016-9-13

[6]
Structural and Mechanical Improvements to Bone Are Strain Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice.

PLoS One. 2015-6-26

[7]
Effects of Deletion of ERα in Osteoblast-Lineage Cells on Bone Mass and Adaptation to Mechanical Loading Differ in Female and Male Mice.

J Bone Miner Res. 2015-8

[8]
Androgens inhibit the osteogenic response to mechanical loading in adult male mice.

Endocrinology. 2015-4

[9]
Prolonged mechanical stretch initiates intracellular calcium oscillations in human mesenchymal stem cells.

PLoS One. 2014-10-20

[10]
Rest intervals reduce the number of loading bouts required to enhance bone formation.

Med Sci Sports Exerc. 2015-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索