Department of Bioengineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
Department of Mechanical and Industrial Engineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
Curr Osteoporos Rep. 2023 Apr;21(2):105-116. doi: 10.1007/s11914-023-00776-9. Epub 2023 Feb 18.
Bone adapts structure and material properties in response to its mechanical environment, a process called mechanoadpatation. For the past 50 years, finite element modeling has been used to investigate the relationships between bone geometry, material properties, and mechanical loading conditions. This review examines how we use finite element modeling in the context of bone mechanoadpatation.
Finite element models estimate complex mechanical stimuli at the tissue and cellular levels, help explain experimental results, and inform the design of loading protocols and prosthetics. FE modeling is a powerful tool to study bone adaptation as it complements experimental approaches. Before using FE models, researchers should determine whether simulation results will provide complementary information to experimental or clinical observations and should establish the level of complexity required. As imaging technics and computational capacity continue increasing, we expect FE models to help in designing treatments of bone pathologies that take advantage of mechanoadaptation of bone.
骨骼通过适应其力学环境来改变结构和材料特性,这一过程称为机械适应性。在过去的 50 年中,有限元建模已被用于研究骨骼的几何形状、材料特性和机械加载条件之间的关系。本综述考察了我们如何在骨骼机械适应性的背景下使用有限元建模。
有限元模型可估算组织和细胞水平的复杂力学刺激,有助于解释实验结果,并为加载方案和假体的设计提供信息。FE 建模是研究骨骼适应性的有力工具,因为它补充了实验方法。在使用 FE 模型之前,研究人员应确定模拟结果是否会提供对实验或临床观察的补充信息,并应确定所需的复杂程度。随着成像技术和计算能力的不断提高,我们预计 FE 模型将有助于设计利用骨骼机械适应性的骨骼病理治疗方法。