Zhang Hui, Meng Dejing, Fu Bing, Fan Huizhen, Cai Rui, Fu Peter P, Wu Xiaochun
a CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing , P. R. China.
b US Food and Drug Administration, National Center for Toxicological Research , Jefferson , AR , USA.
J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2019;37(2):81-98. doi: 10.1080/10590501.2019.1602988. Epub 2019 May 26.
Combinations of semiconductor nanoparticles (NPs) with noble metal NPs enable an increase in the photoactivity of semiconductor NPs into the visible and near-infrared regions. The design rationale of the semiconductor-metal hybrid nanostructures for the optimization of charge carrier separation and reactive oxygen species (ROS) generation remains unclear. In this study, the interactions of Au nanorods (AuNRs) with TiO NPs were modulated by controlling their surface charges. Positively charged AuNRs formed aggregates with the negatively charged TiO NPs (AuNR@CTAB/TiO) upon mixing, suggesting that Schottky junctions may exist between Au and TiO. In contrast, negatively charged AuNRs (AuNR@PSS) remained spatially separated from the TiO NPs in the mixed suspension (AuNR@PSS/TiO), owing to electrostatic repulsion. We used electron spin resonance (ESR) spectroscopy to detect the separation of charged carriers and ROS generation in these two mixtures under simulated sunlight irradiation. We also explored the role of dissolved oxygen in charge carrier separation and ROS generation by continuously introducing oxygen into the AuNR@CTAB/TiO suspension under simulated sunlight irradiation. Moreover, the generation of ROS by the AuNR@CTAB/TiO and AuNR@PSS/TiO mixtures were also examined under 808 nm laser irradiation. Our results show that the photogenerated electrons of excited semiconductor NPs are readily transferred to noble metal NPs simply by collisions, but the transfer of photogenerated hot electrons from excited AuNRs to TiO NPs is more stringent and requires the formation of Schottky junctions. In addition, the introduction of oxygen is an efficient way to enhance the photocatalytic activity of semiconductor NPs/noble metal NPs system combinations.
半导体纳米颗粒(NPs)与贵金属NPs的组合能够提高半导体NPs在可见光和近红外区域的光活性。用于优化电荷载流子分离和活性氧(ROS)生成的半导体-金属混合纳米结构的设计原理仍不清楚。在本研究中,通过控制金纳米棒(AuNRs)与TiO NPs的表面电荷来调节它们之间的相互作用。混合后,带正电荷的AuNRs与带负电荷的TiO NPs形成聚集体(AuNR@CTAB/TiO),这表明Au和TiO之间可能存在肖特基结。相反,由于静电排斥,带负电荷的AuNRs(AuNR@PSS)在混合悬浮液(AuNR@PSS/TiO)中与TiO NPs在空间上保持分离。我们使用电子自旋共振(ESR)光谱来检测这两种混合物在模拟太阳光照射下电荷载流子的分离和ROS的生成。我们还通过在模拟太阳光照射下向AuNR@CTAB/TiO悬浮液中连续引入氧气,探索了溶解氧在电荷载流子分离和ROS生成中的作用。此外,还研究了AuNR@CTAB/TiO和AuNR@PSS/TiO混合物在808 nm激光照射下ROS的生成情况。我们的结果表明,受激半导体NPs的光生电子仅通过碰撞就很容易转移到贵金属NPs上,但从受激AuNRs到TiO NPs的光生热电子转移则更为严格,需要形成肖特基结。此外,引入氧气是提高半导体NPs/贵金属NPs系统组合光催化活性的有效方法。