Lu Xingxu, Tang Wenxiang, Du Shoucheng, Wen Liaoyong, Weng Junfei, Ding Yong, Willis William S, Suib Steven L, Gao Pu-Xian
School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.
Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269-3060 , United States.
ACS Appl Mater Interfaces. 2019 Jun 19;11(24):21515-21525. doi: 10.1021/acsami.9b04378. Epub 2019 Jun 7.
Supported metal catalysts are one of the major classes of heterogeneous catalysts, which demand good stability in both the supports and catalysts. Herein, layered protonated titanate-derived TiO (LPT-TiO) nanowire arrays were synthesized to support platinum catalysts using different loading processes. The Pt ion-exchange loading on pristine LPTs followed by thermal annealing resulted in superior Pt catalysts supported on the LPT-TiO nanoarrays with excellent hydrothermal stability and catalytic performance toward CO and NO oxidations as compared to the Pt catalysts through wet-impregnation on the anatase TiO (ANT-TiO) nanoarrays resulted from thermal annealing of LPT nanoarrays. Both loading processes resulted in highly dispersed Pt nanoparticles (NPs) with average sizes smaller than 1 nm at their pristine states. However, after hydrothermal aging at 800 °C for 50 h, highly dispersed Pt NPs were only retained on the ion-exchanged LPT-TiO nanoarrays with the support structure consisting of a mixture of 74% anatase and 26% rutile TiO. For the wet-impregnation loading directly on anatase TiO nanoarrays derived from LPT, the Pt catalysts experienced severe agglomeration after hydrothermal aging, with the nanoarray supports consisting of 86% anatase and 14% rutile TiO. Spectroscopy analysis suggested that Pt cations intercalated into the interlayers of the titanate frameworks through ion-exchange impregnation procedure, which altered the chemical and electronic structures of the catalysts, resulting in the shifts of the electronic binding energy, Raman bands, and optical energy bandgap. The ion-exchangeable nature of LPT nanoarrays clearly provides a structural modification in Pt-doped LPT that has resulted in a strong interaction between the Pt catalysts and LPT-TiO nanoarray supports, leading to the enhanced hydrothermal stability of the catalysts. Considering the wide applications of the LPT and TiO nanomaterials as supports for catalysts, this finding provides a new pathway to design highly stable supported metal catalysts for different reactions.
负载型金属催化剂是多相催化剂的主要类别之一,这要求载体和催化剂都具有良好的稳定性。在此,合成了层状质子化钛酸盐衍生的TiO(LPT-TiO)纳米线阵列,以使用不同的负载工艺来负载铂催化剂。与通过对LPT纳米阵列进行热退火得到的锐钛矿型TiO(ANT-TiO)纳米阵列上进行湿浸渍制备的铂催化剂相比,在原始LPT上进行铂离子交换负载然后热退火,得到了负载在LPT-TiO纳米阵列上的优异铂催化剂,其具有出色的水热稳定性以及对CO和NO氧化的催化性能。两种负载工艺在原始状态下均产生了平均尺寸小于1 nm的高度分散的铂纳米颗粒(NPs)。然而,在800℃水热老化50小时后,高度分散的铂NPs仅保留在离子交换的LPT-TiO纳米阵列上,其载体结构由74%锐钛矿和26%金红石TiO的混合物组成。对于直接负载在由LPT衍生的锐钛矿型TiO纳米阵列上的湿浸渍负载,铂催化剂在水热老化后经历了严重的团聚,其纳米阵列载体由86%锐钛矿和14%金红石TiO组成。光谱分析表明,铂阳离子通过离子交换浸渍过程插入钛酸盐骨架的层间,这改变了催化剂的化学和电子结构,导致电子结合能、拉曼谱带和光学能带隙发生位移。LPT纳米阵列的离子交换性质显然在掺杂铂的LPT中提供了结构修饰,这导致了铂催化剂与LPT-TiO纳米阵列载体之间的强相互作用,从而提高了催化剂的水热稳定性。考虑到LPT和TiO纳米材料作为催化剂载体的广泛应用,这一发现为设计用于不同反应的高稳定性负载型金属催化剂提供了一条新途径。