Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain.
Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
Nat Microbiol. 2019 Sep;4(9):1443-1449. doi: 10.1038/s41564-019-0456-z. Epub 2019 May 27.
Autocrine self-signalling via secreted peptides and cognate receptors regulates cell development in eukaryotes and is conserved from protozoans to mammals. In contrast, secreted peptides from higher fungi have been traditionally associated with paracrine non-self-signalling during sexual reproduction. For example, cells of the model fungus Saccharomyces cerevisiae fall into two distinct mating types (MAT), which produce either a- or α-pheromone and the cognate receptors Ste2 or Ste3, respectively. Inappropriate autocrine pheromone signalling (APS) during mating is prevented by downregulation of the self-pheromone receptor and by a-type cell-specific cleavage of α-pheromone through the protease Bar1 (refs. ). While APS can be artificially induced by manipulation of the pheromone secrete-and-sense circuit, its natural occurrence in ascomycete fungi has not been described. Here, we show that Fusarium oxysporum-a devastating plant pathogen that lacks a known sexual cycle-co-expresses both pheromone-receptor pairs, resulting in autocrine regulation of developmental programmes other than mating. We found that unisexual populations of MAT1-1 cells (α-type idiomorphs) secrete and sense both a- and α-pheromone, and that their perception requires the cognate receptors and conserved elements of the cell wall integrity mitogen-activated protein kinase cascade. We further show that F. oxysporum uses APS to regulate spore germination in a cell-density-dependent manner, whereby the α-Ste2 interaction leads to repression of conidial germination while the a-Ste3 interaction relieves repression. Our results reveal the existence of a regulatory function for peptide pheromones in the quorum-sensing-mediated control of fungal development.
自分泌自我信号通过分泌的肽和同源受体调节真核生物的细胞发育,并且从原生动物到哺乳动物都保守。相比之下,高等真菌分泌的肽传统上与有性生殖期间的旁分泌非自我信号有关。例如,模式真菌酿酒酵母的细胞分为两种不同的交配型(MAT),分别产生α-或α-信息素和相应的受体 Ste2 或 Ste3。通过下调自身信息素受体和通过蛋白酶 Bar1 对α-信息素进行 a 型细胞特异性切割来防止交配期间不适当的自分泌信息素信号(APS)(参考文献)。虽然通过操纵信息素分泌和感知电路可以人工诱导 APS,但在子囊菌真菌中尚未描述其自然发生。在这里,我们表明,缺乏已知有性周期的植物病原体尖孢镰刀菌同时表达了两对信息素受体,导致除交配外的发育程序的自分泌调节。我们发现 MAT1-1 细胞(α 型同形物)的单性种群分泌和感知α-和α-信息素,并且它们的感知需要同源受体和细胞壁完整性丝裂原激活蛋白激酶级联的保守元件。我们进一步表明,尖孢镰刀菌使用 APS 以细胞密度依赖的方式调节孢子萌发,其中α-Ste2 相互作用导致分生孢子萌发的抑制,而 a-Ste3 相互作用则解除抑制。我们的研究结果揭示了肽信息素在群体感应介导的真菌发育调控中的调节功能。