Suppr超能文献

一种用于识别未确诊的 COPD 高危患者的准确预测模型:一项横断面病例发现研究。

An accurate prediction model to identify undiagnosed at-risk patients with COPD: a cross-sectional case-finding study.

机构信息

Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.

Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.

出版信息

NPJ Prim Care Respir Med. 2019 May 28;29(1):22. doi: 10.1038/s41533-019-0135-9.

Abstract

Underuse or unavailability of spirometry is one of the most important factors causing underdiagnosis of COPD. We reported the development of a COPD prediction model to identify at-risk, undiagnosed COPD patients when spirometry was unavailable. This cross-sectional study enrolled subjects aged ≥40 years with respiratory symptoms and a smoking history (≥20 pack-years) in a medical center in two separate periods (development and validation cohorts). All subjects completed COPD assessment test (CAT), peak expiratory flow rate (PEFR) measurement, and confirmatory spirometry. A binary logistic model with calibration (Hosmer-Lemeshow test) and discrimination (area under receiver operating characteristic curve [AUROC]) was implemented. Three hundred and one subjects (development cohort) completed the study, including non-COPD (154, 51.2%) and COPD cases (147; stage I, 27.2%; II, 55.8%; III-IV, 17%). Compared with non-COPD and GOLD I cases, GOLD II-IV patients exhibited significantly higher CAT scores and lower lung function, and were considered clinically significant for COPD. Four independent variables (age, smoking pack-years, CAT score, and percent predicted PEFR) were incorporated developing the prediction model, which estimated the COPD probability (P). This model demonstrated favorable discrimination (AUROC: 0.866/0.828; 95% CI 0.825-0.906/0.751-0.904) and calibration (Hosmer-Lemeshow P = 0.332/0.668) for the development and validation cohorts, respectively. Bootstrap validation with 1000 replicates yielded an AUROC of 0.866 (95% CI 0.821-0.905). A P of ≥0.65 identified COPD patients with high specificity (90%) and a large proportion (91.4%) of patients with clinically significant COPD (development cohort). Our prediction model can help physicians effectively identify at-risk, undiagnosed COPD patients for further diagnostic evaluation and timely treatment when spirometry is unavailable.

摘要

肺功能检查的应用不足或不可用是导致 COPD 漏诊的最重要因素之一。我们报告了一种 COPD 预测模型的开发,以在无法进行肺功能检查时识别有风险的、未被诊断的 COPD 患者。这项横断面研究纳入了在两个不同时期(开发队列和验证队列)在一家医疗中心就诊的年龄≥40 岁、有呼吸系统症状和吸烟史(≥20 包年)的患者。所有患者均完成 COPD 评估测试(CAT)、呼气峰流速(PEFR)测量和确认性肺功能检查。采用包含校准(Hosmer-Lemeshow 检验)和判别力(受试者工作特征曲线下面积 [AUROC])的二项逻辑模型。301 名患者(开发队列)完成了研究,包括非 COPD(154 例,51.2%)和 COPD 患者(147 例;I 期,27.2%;II 期,55.8%;III-IV 期,17%)。与非 COPD 和 GOLD I 患者相比,GOLD II-IV 患者的 CAT 评分显著更高,肺功能显著更低,且被认为对 COPD 有临床意义。纳入了 4 个独立变量(年龄、吸烟包年数、CAT 评分和预计 PEFR 的百分比)来开发预测模型,该模型估计 COPD 概率(P)。该模型在开发队列和验证队列中均表现出良好的判别力(AUROC:0.866/0.828;95%CI:0.825-0.906/0.751-0.904)和校准(Hosmer-Lemeshow P=0.332/0.668)。采用 1000 次重复的自举验证得到的 AUROC 为 0.866(95%CI:0.821-0.905)。当无法进行肺功能检查时,P≥0.65 可识别出特异性高(90%)和有很大比例(91.4%)的有临床意义 COPD 患者(开发队列)。我们的预测模型可帮助医生在无法进行肺功能检查时,有效识别有风险的、未被诊断的 COPD 患者,以便进行进一步的诊断评估和及时治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee93/6538645/f29e0d67ff57/41533_2019_135_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验