Bommer Jouri D S, Zhang Hao, Gül Önder, Nijholt Bas, Wimmer Michael, Rybakov Filipp N, Garaud Julien, Rodic Donjan, Babaev Egor, Troyer Matthias, Car Diana, Plissard Sébastien R, Bakkers Erik P A M, Watanabe Kenji, Taniguchi Takashi, Kouwenhoven Leo P
QuTech, Delft University of Technology, 2600 GA Delft, Netherlands.
Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, Netherlands.
Phys Rev Lett. 2019 May 10;122(18):187702. doi: 10.1103/PhysRevLett.122.187702.
Spin-orbit interaction (SOI) plays a key role in creating Majorana zero modes in semiconductor nanowires proximity coupled to a superconductor. We track the evolution of the induced superconducting gap in InSb nanowires coupled to a NbTiN superconductor in a large range of magnetic field strengths and orientations. Based on realistic simulations of our devices, we reveal SOI with a strength of 0.15-0.35 eV Å. Our approach identifies the direction of the spin-orbit field, which is strongly affected by the superconductor geometry and electrostatic gates.
自旋轨道相互作用(SOI)在与超导体接近耦合的半导体纳米线中产生马约拉纳零模方面起着关键作用。我们在大范围的磁场强度和方向下跟踪了与NbTiN超导体耦合的InSb纳米线中感应超导能隙的演变。基于对我们器件的实际模拟,我们揭示了强度为0.15 - 0.35电子伏特·埃的SOI。我们的方法确定了自旋轨道场的方向,该方向受到超导体几何形状和静电栅极的强烈影响。