Xiang Guotao, Liu Xiaotong, Zhang Jiahua, Liu Zhen, Liu Wen, Ma Yan, Jiang Sha, Tang Xiao, Zhou Xianju, Li Li, Jin Ye
Department of Mathematics and Physics , Chongqing University of Posts and Telecommunications , 2 Chongwen Road , Chongqing 400065 , China.
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , 3888 Eastern South Lake Road , Changchun 130033 , China.
Inorg Chem. 2019 Jun 17;58(12):8245-8252. doi: 10.1021/acs.inorgchem.9b01229. Epub 2019 May 30.
The optical thermometry properties of LuVO:Yb/Er@SiO nanoparticles (NPs) are studied in detail. In order to avoid the overheating effect for biological tissue caused by 980 nm radiation, 915 nm is employed as the excitation wavelength to investigate the upconversion (UC) and optical thermometry properties of the as-prepared NPs. In the visible region, the fluorescence intensity ratio (FIR) of the H and S levels of Er is utilized to measure the temperature. The relative sensitivity S in this case can be written as 1077/ T, which is higher than that of β-NaYF:Yb/Er NPs, β-NaLuF:Yb/Er NPs, YVO:Yb/Er NPs, etc. In the near-infrared (NIR) region, an anomalous enhancement of the I → I transition with increasing temperature is observed. What is more, the FIR of peak 2 (located at 1496 nm) to peak 1 (located at 1527 nm) is changed regularly with increasing temperature, which can also be used to measure the temperature. The combination of the visible and NIR regions for optical thermometry can provide a self-referenced temperature determination to make measurement of the temperature more precise. In addition, the UC mechanism is also investigated, especially the population route of the F level of Er. Through analysis of the decay curves, we propose that the dominant way for populating the Er F level is energy transfer from the Yb F level to the Er I level. All of the results reveal the potential application of LuVO:Yb/Er@SiO NPs for dual-mode optical thermometry.
详细研究了LuVO:Yb/Er@SiO纳米颗粒(NPs)的光学测温特性。为避免980 nm辐射对生物组织造成过热效应,采用915 nm作为激发波长来研究所制备纳米颗粒的上转换(UC)和光学测温特性。在可见光区域,利用Er的H和S能级的荧光强度比(FIR)来测量温度。在这种情况下,相对灵敏度S可写为1077/T,高于β-NaYF:Yb/Er纳米颗粒、β-NaLuF:Yb/Er纳米颗粒、YVO:Yb/Er纳米颗粒等。在近红外(NIR)区域,观察到随着温度升高,I→I跃迁出现异常增强。此外,峰2(位于1496 nm)与峰1(位于1527 nm)的FIR随温度升高而有规律地变化,这也可用于测量温度。可见光和近红外区域相结合进行光学测温可提供自参考温度测定,使温度测量更精确。此外,还研究了UC机制,特别是Er的F能级的布居途径。通过对衰减曲线的分析,我们提出布居Er的F能级的主要方式是从Yb的F能级到Er的I能级的能量转移。所有结果揭示了LuVO:Yb/Er@SiO纳米颗粒在双模光学测温中的潜在应用。