Suppr超能文献

胰岛素调节小鼠海马中的兴奋性突触传递和突触可塑性。

Insulin Modulates Excitatory Synaptic Transmission and Synaptic Plasticity in the Mouse Hippocampus.

机构信息

College of Medicine, The Ohio State University.

College of Medicine, The Ohio State University.

出版信息

Neuroscience. 2019 Jul 15;411:237-254. doi: 10.1016/j.neuroscience.2019.05.033. Epub 2019 May 28.

Abstract

The administration of exogenous insulin into the hippocampus has the potential to enhance cognitive function and exert other beneficial effects. Elucidating the neurobiological substrates of insulin action and its underlying physiological mechanisms may further improve treatment efficacy. Previous work has shown that insulin affects synaptic plasticity, however there are discrepancies and contradictory conclusions between studies. Here, we used extracellular field recordings in mouse hippocampal slices to investigate how insulin acutely modulates synaptic transmission and synaptic plasticity, both of which are correlated with learning and memory processes. Our data demonstrate that insulin application inhibited basal excitatory synaptic transmission and promoted long-term potentiation (LTP) induction at hippocampal Schaffer collateral-CA1 synapses. Under similar conditions, insulin strongly activated the PI3K/AKT pathway, but had only a weak effect on the MAPK/ERK pathway. Although insulin-induced inhibition of field excitatory post-synaptic potentials (fEPSPs) was previously termed insulin-long-term depression (insulin-LTD), insulin application potentiated recovery from classically induced LTD. Further analysis suggests suppression of presynaptic neurotransmitter release contributed to the insulin-LTD. At low concentrations, insulin primarily inhibited fEPSPs; however, at high concentration, its effects were of mixed inhibition and enhancement in different recordings. Moreover, a broad spectrum protein kinase C blocker, cannabinoid receptor type 1 activator, or a high glucose concentration inhibited fEPSPs per se, and disturbed insulin's effect on fEPSP. Insulin also caused depotentiation during LTP expression and triggered depression during LTD recovery. Given the essential roles of dynamic synaptic transmission and plasticity in learning and memory, our data provide more evidence that insulin application may actively modulate hippocampal-dependent cognitive events.

摘要

将外源性胰岛素注入海马体有可能增强认知功能并产生其他有益效果。阐明胰岛素作用的神经生物学基础及其潜在的生理机制可能进一步提高治疗效果。先前的工作表明,胰岛素会影响突触可塑性,但是研究之间存在差异和矛盾的结论。在这里,我们使用小鼠海马切片中的细胞外场记录来研究胰岛素如何急性调节突触传递和突触可塑性,这两者都与学习和记忆过程相关。我们的数据表明,胰岛素的应用抑制了海马体 Schaffer 侧枝-CA1 突触的基础兴奋性突触传递,并促进了长时程增强(LTP)的诱导。在相似的条件下,胰岛素强烈激活了 PI3K/AKT 途径,但对 MAPK/ERK 途径只有微弱的影响。尽管胰岛素诱导的场兴奋性突触后电位(fEPSP)抑制先前被称为胰岛素长时程抑制(insulin-LTD),但胰岛素的应用增强了经典诱导的 LTD 的恢复。进一步的分析表明,抑制突触前神经递质释放有助于胰岛素-LTD。在低浓度下,胰岛素主要抑制 fEPSP;但是,在高浓度下,其在不同记录中的作用既有抑制又有增强。此外,广谱蛋白激酶 C 阻滞剂、大麻素受体 1 激活剂或高葡萄糖浓度本身抑制 fEPSP,并干扰胰岛素对 fEPSP 的作用。胰岛素还在 LTP 表达期间引起去敏作用,并在 LTD 恢复期间引发抑郁。鉴于动态突触传递和可塑性在学习和记忆中的重要作用,我们的数据提供了更多证据表明胰岛素的应用可能主动调节海马体依赖的认知事件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验