South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.
J Magn Reson. 2019 Jul;304:78-86. doi: 10.1016/j.jmr.2019.05.006. Epub 2019 May 21.
Proton nuclear magnetic resonance (NMR) in solid state has gained significant attention in recent years due to the remarkable resolution and sensitivity enhancement afforded by ultrafast magic-angle-spinning (MAS). In spite of the substantial suppression of H-H dipolar couplings, the proton spectral resolution is still poor compared to that of C or N NMR, rendering it challenging for the structural and conformational analysis of complex chemicals or biological solids. Herein, by utilizing the benefits of double-quantum (DQ) and triple-quantum (TQ) coherences, we propose a 3D single-channel pulse sequence that correlates proton triple-quantum/double-quantum/single-quantum (TQ/DQ/SQ) chemical shifts. In addition to the two-spin proximity information, this 3D TQ/DQ/SQ pulse sequence enables more reliable extraction of three-spin proximity information compared to the regular 2D TQ/SQ correlation experiment, which could aid in revealing the proton network in solids. Furthermore, the TQ/DQ slice taken at a specific SQ chemical shift only reveals the local correlations to the corresponding SQ chemical shift, and thus it enables accurate assignments of the proton peaks along the TQ and DQ dimensions and simplifies the interpretation of proton spectra especially for dense proton networks. The high performance of this 3D pulse sequence is well demonstrated on small compounds, L-alanine and a tripeptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (MLF). We expect that this new methodology can inspire the development of multidimensional solid-state NMR pulse sequences using the merits of TQ and DQ coherences and enable high-throughput investigations of complex solids using abundant protons.
固态质子核磁共振(NMR)近年来因超快魔角旋转(MAS)提供的出色分辨率和灵敏度增强而受到广泛关注。尽管质子偶极耦合得到了很大的抑制,但与 C 或 N NMR 相比,质子光谱分辨率仍然较差,这使得对复杂化学物质或生物固体的结构和构象分析具有挑战性。在此,我们利用双量子(DQ)和三量子(TQ)相干的优势,提出了一种 3D 单通道脉冲序列,该序列关联质子三量子/双量子/单量子(TQ/DQ/SQ)化学位移。除了两自旋接近信息外,与常规的 2D TQ/SQ 相关实验相比,该 3D TQ/DQ/SQ 脉冲序列能够更可靠地提取三自旋接近信息,这有助于揭示固体中的质子网络。此外,在特定 SQ 化学位移处采集的 TQ/DQ 切片仅揭示了与相应 SQ 化学位移的局部相关性,因此能够准确分配 TQ 和 DQ 维度上的质子峰,并简化质子谱的解释,特别是对于密集的质子网络。该 3D 脉冲序列在小分子 L-丙氨酸和三肽 N-甲酰基-L-甲硫氨酸-L-亮氨酸-L-苯丙氨酸(MLF)上的优异性能得到了很好的证明。我们期望这种新方法能够激发使用 TQ 和 DQ 相干优势的多维固态 NMR 脉冲序列的发展,并能够使用丰富的质子对复杂固体进行高通量研究。