Key Laboratory of Evidence Science Techniques Research and Application, Gansu Institute of Political Science and Law, Gansu Province, 730070, Lanzhou, China.
MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, China.
Anal Chim Acta. 2019 Sep 23;1072:46-53. doi: 10.1016/j.aca.2019.04.040. Epub 2019 Apr 22.
In clinical practice, the excess concentration of bilirubin can trigger diseases such as neonatal jaundice, hepatic failure, septicemia, and so on. The concentration of bilirubin is one of important clinical indexes to evaluate patients with hepatic function disease in clinical practice. Therefore, it is very necessary to develop a rapid detection technique detecting the bilirubin in body fluids. Here, a new electrochemical sensor based on Au nanoparticles/tetrathiafulvalene-carboxylate functionalized reduced grapheneoxide 0D-2D heterojunction(AuNPs/TTF-COOH/RGO) was fabricated for the discrimination of bilirubin in real human blood. The TTF-COOH could effectively repair electron conductivity of RGO nanosheets, decrease interface resistance, and also enhance the dispersity of TTF-COOH/RGO nanosheets in water. What's more, the S atoms of TTF-COOH can bonding the gold nano-particles (AuNPs) to fabricate a 0D-2D heterojunction with excellent biocompatibility and enhanced specific surface area. After bilirubin oxidases were self-assembled on the surface of AuNPs, a specific recognition interface was formed as a sensor for the detection of bilirubin. The heterojunction showed enhanced interface electron transfer rate, excellent biocompatibility, and also prominent electrocatalytic activity for the high efficiency catalysis of bilirubin. The sensor shows a linear response for bilirubin from 2.66 to 83 μmol L and a low detection limit of 0.74 μmol L at 3σ. This work provides one novel approach to detection of bilirubin by functional RGO nanosheets, and broadens the application area of RGO nanosheets in selective catalysis and detection of biomolecule in biological specimens, such as blood, urine.
在临床实践中,胆红素的浓度过高会引发新生儿黄疸、肝衰竭、败血症等疾病。胆红素浓度是临床评估肝功能疾病患者的重要临床指标之一。因此,开发一种快速检测体液中胆红素的技术非常必要。在这里,我们基于金纳米粒子/四硫富瓦烯-羧酸功能化还原氧化石墨烯 0D-2D 异质结(AuNPs/TTF-COOH/RGO)构建了一种新的电化学传感器,用于区分真实人体血液中的胆红素。TTF-COOH 可以有效地修复 RGO 纳米片的电子导电性,降低界面电阻,同时增强 TTF-COOH/RGO 纳米片在水中的分散性。此外,TTF-COOH 的 S 原子可以与金纳米粒子(AuNPs)结合,形成具有优异生物相容性和增强比表面积的 0D-2D 异质结。在胆红素氧化酶自组装到 AuNPs 表面后,形成了一个特定的识别界面,作为检测胆红素的传感器。该异质结表现出增强的界面电子转移速率、优异的生物相容性,以及对胆红素的高效催化作用,具有突出的电催化活性。该传感器对胆红素的线性响应范围为 2.66 至 83 μmol·L,检测限低至 0.74 μmol·L(3σ)。这项工作为通过功能化 RGO 纳米片检测胆红素提供了一种新方法,并拓宽了 RGO 纳米片在生物样本(如血液、尿液)中选择性催化和生物分子检测等领域的应用范围。