National Institute of Standards and Technology, Boulder, CO 80305, USA.
Department of Physics, University of Colorado, Boulder, CO 80309, USA.
Science. 2019 May 31;364(6443):875-878. doi: 10.1126/science.aaw9415.
Large-scale quantum computers will require quantum gate operations between widely separated qubits. A method for implementing such operations, known as quantum gate teleportation (QGT), requires only local operations, classical communication, and shared entanglement. We demonstrate QGT in a scalable architecture by deterministically teleporting a controlled-NOT (CNOT) gate between two qubits in spatially separated locations in an ion trap. The entanglement fidelity of our teleported CNOT is in the interval (0.845, 0.872) at the 95% confidence level. The implementation combines ion shuttling with individually addressed single-qubit rotations and detections, same- and mixed-species two-qubit gates, and real-time conditional operations, thereby demonstrating essential tools for scaling trapped-ion quantum computers combined in a single device.
大规模量子计算机将需要在远距离分离的量子比特之间进行量子门操作。一种实现这种操作的方法,称为量子门传送(QGT),只需要局部操作、经典通信和共享纠缠。我们通过在离子阱中两个空间分离位置的两个量子比特之间确定性地传送受控-NOT(CNOT)门,在可扩展架构中演示了 QGT。我们传送的 CNOT 的纠缠保真度在 95%置信水平下处于(0.845,0.872)区间。该实现将离子穿梭与单独寻址的单量子比特旋转和检测、同和混合物种的两量子比特门以及实时条件操作相结合,从而展示了在单个设备中组合的用于扩展俘获离子量子计算机的基本工具。