Liu Dongning, Jin Zhanping, Liu Jingyuan, Zou Xiaotong, Ren Xiaosong, Li Hao, You Lixing, Feng Xue, Liu Fang, Cui Kaiyu, Huang Yidong, Zhang Wei
Frontier Science Center for Quantum Information, State Key Laboratory of Low-Dimensional Quantum Physics, Beijing National Research Center for Information Science and Technology (BNRist), Electronic Engineering Department, Tsinghua University, Beijing, China.
National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
Light Sci Appl. 2025 Jul 9;14(1):243. doi: 10.1038/s41377-025-01920-z.
Quantum teleportation is a crucial function in quantum networks. The implementation of photonic quantum teleportation could be highly simplified by quantum photonic circuits. To extend chip-to-chip teleportation distance, more effort is needed on both chip design and system implementation. In this work, we demonstrate a time-bin-based chip-to-chip photonic quantum teleportation over optical fibers under the scenario of a star-topology quantum network. Three quantum photonic circuits are designed and fabricated on a single chip, each serving specific functions: heralded single-photon generation at the user node, entangled photon pair generation and BSM at the relay node, and projective measurement of the teleported photons at the central node. The unbalanced Mach-Zehnder interferometers (UMZI) for time-bin encoding in these quantum photonic circuits are optimized to reduce insertion losses and suppress noise photons generated on the chip. Besides, an active feedback system is employed to suppress the impact of fiber length fluctuation between the circuits, achieving a stable quantum interference for the BSM in the relay node. As a result, a photonic quantum teleportation over optical fibers of 12.3 km is achieved based on these quantum photonic circuits, showing the potential of chip integration for the development of quantum networks.
量子隐形传态是量子网络中的一项关键功能。量子光子电路可以极大地简化光子量子隐形传态的实现。为了扩展芯片间的隐形传态距离,在芯片设计和系统实现方面都需要付出更多努力。在这项工作中,我们展示了在星型拓扑量子网络场景下,基于时间编码的芯片间光子量子隐形传态通过光纤实现。三个量子光子电路在单个芯片上设计并制造,每个电路具有特定功能:用户节点处的预示单光子生成、中继节点处的纠缠光子对生成和贝尔态测量,以及中心节点处对隐形传态光子的投影测量。这些量子光子电路中用于时间编码的非平衡马赫曾德尔干涉仪(UMZI)经过优化,以减少插入损耗并抑制芯片上产生的噪声光子。此外,采用了有源反馈系统来抑制电路间光纤长度波动的影响,为中继节点中的贝尔态测量实现稳定的量子干涉。结果,基于这些量子光子电路实现了12.3千米光纤上的光子量子隐形传态,展示了芯片集成在量子网络发展中的潜力。