Suppr超能文献

个性化信号无关波束形成技术在双耳助听设备中的应用。

Personalized signal-independent beamforming for binaural hearing aids.

机构信息

Department of Electrical & Electronic Engineering, Imperial College, London, SW7 2AZ, United Kingdom.

Oticon A/S, 2765 Smørum, Denmark.

出版信息

J Acoust Soc Am. 2019 May;145(5):2971. doi: 10.1121/1.5102173.

Abstract

The effect of personalized microphone array calibration on the performance of hearing aid beamformers under noisy reverberant conditions is studied. The study makes use of a new, publicly available, database containing acoustic transfer function measurements from 29 loudspeakers arranged on a sphere to a pair of behind-the-ear hearing aids in a listening room when worn by 27 males, 14 females, and 4 mannequins. Bilateral and binaural beamformers are designed using each participant's hearing aid head-related impulse responses (HAHRIRs). The performance of these personalized beamformers is compared to that of mismatched beamformers, where the HAHRIR used for the design does not belong to the individual for whom performance is measured. The case where the mismatched HAHRIR is that of a mannequin is of particular interest since it represents current practice in commercially available hearing aids. The benefit of personalized beamforming is assessed using an intrusive binaural speech intelligibility metric and in a matrix speech intelligibility test. For binaural beamforming, both measures demonstrate a statistically signficant (p < 0.05) benefit of personalization. The benefit varies substantially between individuals with some predicted to benefit by as much as 1.5 dB.

摘要

研究了个性化传声器阵列校准对噪声混响环境下助听器波束形成器性能的影响。该研究利用了一个新的、公开可用的数据库,该数据库包含了在聆听室中,由 29 个扬声器排列在一个球体上,到一对佩戴在 27 名男性、14 名女性和 4 个假人耳朵后面的助听器的声学传递函数测量值。使用每个参与者的助听器头部相关脉冲响应(HAHRIR)设计双侧和双耳波束形成器。将这些个性化波束形成器的性能与不匹配的波束形成器进行比较,其中用于设计的 HAHRIR 不属于要测量性能的个体。不匹配的 HAHRIR 是假人的情况特别有趣,因为它代表了商业上可用的助听器的当前实践。使用侵入性双耳语音可懂度度量和矩阵语音可懂度测试评估个性化波束形成的益处。对于双耳波束形成,这两个度量都证明了个性化的显著(p < 0.05)益处。益处因人而异,有些人的预测增益高达 1.5 dB。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验