Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada.
Respir Physiol Neurobiol. 2019 Sep;267:12-19. doi: 10.1016/j.resp.2019.05.012. Epub 2019 May 30.
Erythropoietin (EPO) is a hypoxia-inducible hormone, classically known to enhance red blood cell production upon binding its receptor (EPOR) present on the surface of the erythroid progenitor cells. EPO and its receptor are also expressed in the central nervous system (CNS), exerting several non-hematopoietic actions. EPO also plays an important role in the control of breathing. In this review, we summarize the known physiological actions of EPO in the neural control of ventilation during postnatal development and at adulthood in rodents under normoxic and hypoxic conditions. Furthermore, we present the developmental expression patterns of EPO and EPORs in the brainstem, and with the use of in situ hybridization (ISH) and immunofluorescence techniques we provide original data showing that EPOR is abundantly present in specific brainstem nuclei associated with central chemosensitivity and control of ventilation in the ventrolateral medulla, mainly on somatostatin negative cells. Thus, we conclude that EPO signaling may act through glutamatergic neuron populations that are the primary source of rhythmic inspiratory excitatory drive. This work underlies the importance of EPO signaling in the central control of ventilation across development and adulthood and provides new insights on the expression of EPOR at the cellular level.
促红细胞生成素 (EPO) 是一种缺氧诱导激素,经典地通过与其在红系祖细胞表面表达的受体 (EPOR) 结合来增强红细胞生成。EPO 和其受体也在中枢神经系统 (CNS) 中表达,发挥多种非造血作用。EPO 在呼吸控制中也起着重要作用。在这篇综述中,我们总结了已知的 EPO 在正常氧和缺氧条件下啮齿动物出生后发育和成年期呼吸通气的神经控制中的生理作用。此外,我们展示了 EPO 和 EPOR 在脑干中的发育表达模式,并使用原位杂交 (ISH) 和免疫荧光技术提供了原始数据,表明 EPOR 大量存在于与延髓腹外侧部的中枢化学敏感性和通气控制相关的特定脑干核中,主要存在于生长抑素阴性细胞上。因此,我们得出结论,EPO 信号可能通过谷氨酸能神经元群发挥作用,这些神经元群是节律性吸气兴奋性驱动的主要来源。这项工作强调了 EPO 信号在整个发育和成年期中枢通气控制中的重要性,并提供了关于 EPOR 在细胞水平表达的新见解。