Abdellatif Mohamed E A, Hipp Lisa, Plessner Matthias, Walther Paul, Knöll Bernd
Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
Histochem Cell Biol. 2019 Aug;152(2):133-143. doi: 10.1007/s00418-019-01795-3. Epub 2019 Jun 1.
Actin fulfills important cytoplasmic but also nuclear functions in eukaryotic cells. In the nucleus, actin modulates gene expression and chromatin remodeling. Monomeric (G-actin) and polymerized actin (F-actin) have been analyzed by fluorescence microscopy in the nucleus; however, the resolution at the ultrastructural level has not been investigated in great detail. We provide a first documentation of nuclear actin in mouse fibroblasts by electron microscopy (EM). For this, we employed correlative light and electron microscopy on the same section using actin-directed nanobodies recognizing endogenous monomeric and polymeric actin proteins (so-called nuclear Actin-chromobody-GFP; nAC-GFP). Indeed, using this strategy, we could identify actin proteins present in the nucleus. Here, immunogold-labeled actin proteins were spread throughout the entire nucleoplasm. Of note, nuclear actin was complementarily localized to DAPI-positive areas, the latter marking preferentially transcriptionally inactive heterochromatin. Since actin aggregates in rod structures upon cell stress including neurodegeneration, we analyzed nuclear actin at the ultrastructural level after DMSO or UV-mediated cell damage. In those cells the ratio between cytoplasmic and nuclear gold-labeled actin proteins was altered compared to untreated control cells. In summary, this EM analysis (i) confirmed the presence of endogenous nuclear actin at ultrastructural resolution, (ii) revealed the actin abundance in less chromatin-dense regions potentially reflecting more transcriptionally active euchromatin rather than transcriptionally inactive heterochromatin and (iii) showed an altered abundance of actin-associated gold particles upon cell stress.
肌动蛋白在真核细胞中履行着重要的细胞质功能,同时也具有核功能。在细胞核中,肌动蛋白调节基因表达和染色质重塑。单体肌动蛋白(G-肌动蛋白)和聚合肌动蛋白(F-肌动蛋白)已通过荧光显微镜在细胞核中进行了分析;然而,超微结构水平的分辨率尚未得到详细研究。我们通过电子显微镜(EM)首次记录了小鼠成纤维细胞核中的肌动蛋白。为此,我们在同一切片上采用了相关光镜和电子显微镜技术,使用识别内源性单体和聚合肌动蛋白的肌动蛋白导向纳米抗体(即所谓的核肌动蛋白染色质体绿色荧光蛋白;nAC-GFP)。事实上,使用这种策略,我们能够识别细胞核中存在的肌动蛋白。在这里,免疫金标记的肌动蛋白分布在整个核质中。值得注意的是,核肌动蛋白与DAPI阳性区域互补定位,后者优先标记转录不活跃的异染色质。由于在包括神经退行性变在内的细胞应激时肌动蛋白会聚集形成杆状结构,我们在二甲基亚砜(DMSO)或紫外线介导的细胞损伤后,在超微结构水平上分析了核肌动蛋白。与未处理的对照细胞相比,这些细胞中细胞质和细胞核中金标记的肌动蛋白蛋白的比例发生了改变。总之,这种电子显微镜分析(i)在超微结构分辨率下证实了内源性核肌动蛋白的存在,(ii)揭示了在染色质密度较低区域肌动蛋白的丰度,这可能反映了转录活性更高的常染色质而非转录不活跃的异染色质,(iii)显示了细胞应激时肌动蛋白相关金颗粒的丰度发生了改变。