Galway Neuroscience Centre, School of Natural Sciences, Biomedical Sciences Building, National University of Ireland, Galway, Ireland.
Centre for Microscopy and Imaging, National University of Ireland, Galway, Ireland.
J Neurosci Methods. 2018 Feb 1;295:87-103. doi: 10.1016/j.jneumeth.2017.12.002. Epub 2017 Dec 6.
Image segmentation is often imperfect, particularly in complex image sets such z-stack micrographs of slice cultures and there is a need for sufficient details of parameters used in quantitative image analysis to allow independent repeatability and appraisal.
For the first time, we have critically evaluated, quantified and validated the performance of different segmentation methodologies using z-stack images of ex vivo glial cells. The BioVoxxel toolbox plugin, available in FIJI, was used to measure the relative quality, accuracy, specificity and sensitivity of 16 global and 9 local threshold automatic thresholding algorithms.
Automatic thresholding yields improved binary representation of glial cells compared with the conventional user-chosen single threshold approach for confocal z-stacks acquired from ex vivo slice cultures. The performance of threshold algorithms varies considerably in quality, specificity, accuracy and sensitivity with entropy-based thresholds scoring highest for fluorescent staining.
We have used the BioVoxxel toolbox to correctly and consistently select the best automated threshold algorithm to segment z-projected images of ex vivo glial cells for downstream digital image analysis and to define segmentation quality. The automated OLIG2 cell count was validated using stereology.
As image segmentation and feature extraction can quite critically affect the performance of successive steps in the image analysis workflow, it is becoming increasingly necessary to consider the quality of digital segmenting methodologies. Here, we have applied, validated and extended an existing performance-check methodology in the BioVoxxel toolbox to z-projected images of ex vivo glia cells.
图像分割往往不完美,特别是在复杂的图像集,如切片培养的 z 堆叠显微镜图像,需要充分了解定量图像分析中使用的参数,以允许独立的可重复性和评估。
我们首次使用体外神经胶质细胞的 z 堆叠图像,对不同的分割方法进行了严格的评估、量化和验证。 Fiji 中的 BioVoxxel 工具包插件用于测量 16 种全局和 9 种局部阈值自动阈值算法的相对质量、准确性、特异性和敏感性。
与传统的用户选择的单个阈值方法相比,自动阈值处理可以改善共聚焦 z 堆叠从体外切片培养获得的神经胶质细胞的二进制表示。阈值算法的性能在质量、特异性、准确性和敏感性方面差异很大,基于熵的阈值在荧光染色方面得分最高。
我们使用 BioVoxxel 工具包正确且一致地选择了最佳的自动阈值算法,以分割体外神经胶质细胞的 z 投影图像,用于下游数字图像分析和定义分割质量。使用体视学验证了自动 OLIG2 细胞计数。
由于图像分割和特征提取可以极大地影响图像分析工作流程中后续步骤的性能,因此越来越有必要考虑数字分割方法的质量。在这里,我们已经应用、验证和扩展了现有的性能检查方法在 BioVoxxel 工具包中,用于体外神经胶质细胞的 z 投影图像。