Suppr超能文献

从医疗记录中提取信息。

Extraction from Medical Records.

作者信息

Dudchenko Aleksei, Dudchenko Polina, Ganzinger Matthias, Kopanitsa Georgy

机构信息

National Research Tomsk Polytechnic University, Tomsk, Russia.

Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany.

出版信息

Stud Health Technol Inform. 2019;261:62-67.

Abstract

Despite using electronic medical records, free narrative text is still widely used for medical records. Such text cannot be analyzed by statistical tools and be proceed by decision support systems. To make data from texts available for such tasks a supervised machine learning algorithms might be successfully applied. In this work, we develop and compare a prototype of a medical data extraction system based on different artificial neuron networks architectures to process free medical texts in Russian language. The best F-score (0.9763) achieved on a combination of CNN prediction model and large pre-trained word2vec model. The very close result (0.9741) has shown by the MLP model with the same embedding.

摘要

尽管使用了电子病历,但自由叙述文本在医疗记录中仍被广泛使用。此类文本无法通过统计工具进行分析,也无法由决策支持系统进行处理。为了使文本数据可用于此类任务,监督式机器学习算法可能会成功应用。在这项工作中,我们开发并比较了一个基于不同人工神经网络架构的医疗数据提取系统原型,以处理俄语的自由医疗文本。在CNN预测模型和大型预训练词向量模型的组合上取得了最佳F值(0.9763)。具有相同嵌入的MLP模型也显示出非常接近的结果(0.9741)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验