O'Hara Matthew J, Addleman R Shane
Pacific Northwest National Laboratory, 902 Battelle Blvd., PO Box 999, Richland, WA 99352, USA.
Anal Methods. 2017 May 21;9(19):2791-2804. doi: 10.1039/c7ay00247e. Epub 2017 Mar 21.
Radioactive contamination, be it from accidental or intentional release, can create an urgent need to assess water and food supplies and the environment, and monitor human health. In the event of such an emergency, rapid and efficient methods may be needed to assess contamination levels in scores of samples within a short time frame. Internalized exposure to radionuclides that decay by alpha (α) emission can be especially hazardous, given the strongly ionizing nature of the α particle. Unfortunately, the determination of α-emitting radionuclides using traditional radioanalytical methods is typically labor and resource intensive and time consuming. In an effort to devise methods that are fast, require little labor and laboratory expendables, and minimize the use of toxic or corrosive reagents, researchers at PNNL have evaluated superparamagnetic nanoparticles as extracting agents for α-emitting radionuclides from chemically unmodified and acidified (pH 2) aqueous systems. It is demonstrated that bare magnetite nanoparticles exhibit strong affinity for two representative α-emitting radionuclides (Am and Po) from two representative aqueous matrices (river and ground water). Furthermore, use of the superparamagnetic properties of these nanomaterials to concentrate the analyte-bearing solids from the bulk aqueous solution has been demonstrated. The nanoparticle concentrate can be either directly dispensed into a scintillation cocktail, or first dissolved and then added to a scintillation cocktail as a solution for an α-emission assay by liquid scintillation analysis. Despite the severe quenching caused by the metal oxide suspensions in the cocktail, the authors have demonstrated that modern liquid scintillation analyzers can report accurate α activity count rates; the upper limits of nanoparticle suspension concentrations in a cocktail are reported for cases wherein normal instrument count mode and a quench correction protocol are used. Discussions are provided on the presented sample processing and analysis method, the improvement (lowering) of minimum detectable activity concentrations using the nanoparticle-based assay method, and the quenching effects of nanoparticle suspensions in a scintillation cocktail.
放射性污染,无论是意外释放还是故意排放,都会迫切需要对水、食品供应和环境进行评估,并监测人类健康。在发生此类紧急情况时,可能需要快速有效的方法在短时间内评估大量样品中的污染水平。鉴于α粒子具有强电离性,通过α发射衰变的放射性核素的内照射可能特别危险。不幸的是,使用传统放射分析方法测定发射α粒子的放射性核素通常需要大量人力、资源且耗时。为了设计出快速、省力、耗材少且尽量减少使用有毒或腐蚀性试剂的方法,太平洋西北国家实验室的研究人员评估了超顺磁性纳米颗粒作为从化学未改性和酸化(pH值为2)的水体系中提取发射α粒子放射性核素的萃取剂。结果表明,裸露的磁铁矿纳米颗粒对两种代表性水基质(河水和地下水)中的两种代表性发射α粒子的放射性核素(镅和钋)具有很强的亲和力。此外,还展示了利用这些纳米材料的超顺磁性从大量水溶液中浓缩含分析物固体的方法。纳米颗粒浓缩物既可以直接加入闪烁液中,也可以先溶解然后作为溶液加入闪烁液中,通过液体闪烁分析进行α发射测定。尽管闪烁液中金属氧化物悬浮液会导致严重淬灭,但作者证明现代液体闪烁分析仪可以报告准确的α活度计数率;报告了在使用正常仪器计数模式和淬灭校正方案的情况下,闪烁液中纳米颗粒悬浮液浓度上限。文中讨论了所提出的样品处理和分析方法、使用基于纳米颗粒的测定方法降低最低可检测活度浓度、以及纳米颗粒悬浮液在闪烁液中的淬灭效应。