Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain; Chemometrics Group, Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, B. Av. Diagonal, 645, 08028, Barcelona, Spain.
Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France.
Anal Chim Acta. 2019 Oct 3;1074:69-79. doi: 10.1016/j.aca.2019.04.074. Epub 2019 May 3.
The characterization of cancer tissues by matrix-assisted laser desorption ionization-mass spectrometry images (MALDI-MSI) is of great interest because of the power of MALDI-MS to understand the composition of biological samples and the imaging side that allows for setting spatial boundaries among tissues of different nature based on their compositional differences. In tissue-based cancer research, information on the spatial location of necrotic/tumoral cell populations can be approximately known from grayscale images of the scanned tissue slices. This study proposes as a major novelty the introduction of this physiologically-based information to help in the performance of unmixing methods, oriented to extract the MS signatures and distribution maps of the different tissues present in biological samples. Specifically, the information gathered from grayscale images will be used as a local rank constraint in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) for the analysis of MALDI-MSI of cancer tissues. The use of this constraint, setting absence of certain kind of tissues only in clear zones of the image, will help to improve the performance of MCR-ALS and to provide a more reliable definition of the chemical MS fingerprint and location of the tissues of interest. The general strategy to address the analysis of MALDI-MSI of cancer tissues will involve the study of the MCR-ALS results and the posterior use of MCR-ALS scores as dimensionality reduction for image segmentation based on K-means clustering. The resolution method will provide the MS signatures and their distribution maps for each tissue in the sample. Then, the resolved distribution maps for each biological component (MCR scores) will be submitted as initial information to K-means clustering for image segmentation to obtain information on the boundaries of the different tissular regions in the samples studied. MCR-ALS prior to K-means not only provides the desired dimensionality reduction, but additionally resolved non-biological signal contributions are not used and the weight given to the different biological components in the segmentation process can be modulated by suitable preprocessing methods.
基质辅助激光解吸电离-质谱成像(MALDI-MSI)对癌症组织的特征分析具有重要意义,因为 MALDI-MS 能够了解生物样本的组成,而成像则能够根据不同组织的组成差异来设定空间边界。在基于组织的癌症研究中,可以从扫描组织切片的灰度图像中大致了解坏死/肿瘤细胞群的空间位置信息。本研究的主要创新点在于引入这种基于生理的信息,以帮助进行解混方法的性能,这些方法旨在提取生物样本中不同组织的 MS 特征和分布图谱。具体来说,将从灰度图像中收集的信息用作多变量曲线分辨-交替最小二乘法(MCR-ALS)分析癌症组织 MALDI-MSI 的局部秩约束。仅在图像的清晰区域设置某些组织不存在的这种约束,将有助于提高 MCR-ALS 的性能,并为感兴趣组织的化学 MS 指纹和位置提供更可靠的定义。解决癌症组织 MALDI-MSI 分析的一般策略将涉及研究 MCR-ALS 结果,以及随后将 MCR-ALS 得分用作基于 K-均值聚类的图像分割的降维。该分辨率方法将为样本中的每个组织提供 MS 特征及其分布图谱。然后,将每个生物成分(MCR 得分)的解析分布图谱作为初始信息提交给 K-均值聚类进行图像分割,以获得研究样本中不同组织区域边界的信息。K-均值聚类之前的 MCR-ALS 不仅提供了所需的降维,而且还排除了非生物信号的贡献,并且可以通过适当的预处理方法来调节分割过程中不同生物成分的权重。