Suppr超能文献

只见树木,不见森林:论定义复杂问题解决情境复杂性的困难。

Missing the Wood for the Wrong Trees: On the Difficulty of Defining the Complexity of Complex Problem Solving Scenarios.

作者信息

Beckmann Jens F, Goode Natassia

机构信息

School of Education, Durham University, Leazes Rd, Durham DH1 1TA, UK.

Faculty of Arts, Business and Law, Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia.

出版信息

J Intell. 2017 Apr 13;5(2):15. doi: 10.3390/jintelligence5020015.

Abstract

In this paper we discuss how the lack of a common framework in Complex Problem Solving (CPS) creates a major hindrance to a productive integration of findings and insights gained in its 40+-year history of research. We propose a framework that anchors complexity within the tri-dimensional variable space of Person, Task and Situation. Complexity is determined by the number of information cues that need to be processed in parallel. What constitutes an information cue is dependent on the kind of task, the system or CPS scenario used and the task environment (i.e., situation) in which the task is performed. Difficulty is conceptualised as a person's subjective reflection of complexity. Using an existing data set of = 294 university students' problem solving performances, we test the assumption derived from this framework that particular system features such as numbers of variables (NoV) or numbers of relationships (NoR) are inappropriate indicators of complexity. We do so by contrasting control performance across four systems that differ in these attributes. Results suggest that for controlling systems (task) with semantically neutral embedment (situation), the maximum number of dependencies any of the output variables has is a promising indicator of this task's complexity.

摘要

在本文中,我们探讨了复杂问题解决(CPS)中缺乏通用框架如何对有效整合其40多年研究历史中获得的研究结果和见解造成了重大阻碍。我们提出了一个框架,将复杂性锚定在人、任务和情境的三维变量空间内。复杂性由需要并行处理的信息线索数量决定。构成信息线索的因素取决于任务的类型、所使用的系统或CPS场景以及执行任务的任务环境(即情境)。难度被概念化为个人对复杂性的主观反映。利用一个包含n = 294名大学生问题解决表现的现有数据集,我们检验了从该框架得出的假设,即诸如变量数量(NoV)或关系数量(NoR)等特定系统特征并非复杂性的恰当指标。我们通过对比在这些属性上存在差异的四个系统的控制性能来进行检验。结果表明,对于具有语义中性嵌入(情境)的控制系统(任务),任何输出变量的最大依赖数量是该任务复杂性的一个有前景的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5986/6526426/ec1240418ca2/jintelligence-05-00015-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验