Tschentscher Nadja, Hauk Olaf
Cognition and Brain Sciences Unit, Medical Research Council Cambridge, UK.
Front Psychol. 2015 Aug 13;6:1188. doi: 10.3389/fpsyg.2015.01188. eCollection 2015.
Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging methods. However, the evaluation of task complexity varies significantly across neuroimaging studies. Most studies have parameterized task complexity by objective features such as the number size. Only a few studies used subjective rating procedures. In fMRI, we provided evidence that strategy self-reports control better for task complexity across arithmetic conditions than objective features (Tschentscher and Hauk, 2014). Here, we analyzed the relative predictive value of self-reported strategies and objective features for performance in addition and multiplication tasks, by using a paradigm designed for neuroimaging research. We found a superiority of strategy ratings as predictor of performance above objective features. In a Principal Component Analysis on reaction times, the first component explained over 90 percent of variance and factor loadings reflected percentages of self-reported strategies well. In multiple regression analyses on reaction times, self-reported strategies performed equally well or better than objective features, depending on the operation type. A Receiver Operating Characteristic (ROC) analysis confirmed this result. Reaction times classified task complexity better when defined by individual ratings. This suggests that participants' strategy ratings are reliable predictors of arithmetic complexity and should be taken into account in neuroimaging research.
心算作为一种强大的范例,可用于运用神经成像方法来研究问题解决过程。然而,在不同的神经成像研究中,对任务复杂性的评估差异显著。大多数研究通过诸如数字大小等客观特征来对任务复杂性进行参数化。仅有少数研究采用了主观评分程序。在功能磁共振成像(fMRI)研究中,我们提供了证据表明,相较于客观特征,策略自我报告在不同算术条件下能更好地控制任务复杂性(琴切尔和豪克,2014年)。在此,我们通过使用一种专为神经成像研究设计的范例,分析了自我报告策略和客观特征对加法和乘法任务表现的相对预测价值。我们发现,作为表现预测指标,策略评分优于客观特征。在对反应时间进行的主成分分析中,第一个成分解释了超过90%的方差,且因子载荷很好地反映了自我报告策略的百分比。在对反应时间进行的多元回归分析中,根据运算类型,自我报告策略的表现与客观特征相当或更佳。一项接受者操作特征(ROC)分析证实了这一结果。当由个体评分定义时,反应时间能更好地对任务复杂性进行分类。这表明参与者的策略评分是算术复杂性的可靠预测指标,在神经成像研究中应予以考虑。