Suppr超能文献

改进相关法在偏瘫患者静电步态识别中的应用。

Application of an Improved Correlation Method in Electrostatic Gait Recognition of Hemiparetic Patients.

机构信息

State Key Laboratory of Mechatronics Engineering and Control, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Sensors (Basel). 2019 Jun 3;19(11):2529. doi: 10.3390/s19112529.

Abstract

Hemiparesis is one of the common sequelae of neurological diseases such as strokes, which can significantly change the gait behavior of patients and restrict their activities in daily life. The results of gait characteristic analysis can provide a reference for disease diagnosis and rehabilitation; however, gait correlation as a gait characteristic is less utilized currently. In this study, a new non-contact electrostatic field sensing method was used to obtain the electrostatic gait signals of hemiplegic patients and healthy control subjects, and an improved Detrended Cross-Correlation Analysis cross-correlation coefficient method was proposed to analyze the obtained electrostatic gait signals. The results show that the improved method can better obtain the dynamic changes of the scaling index under the multi-scale structure, which makes up for the shortcomings of the traditional Detrended Cross-Correlation Analysis cross-correlation coefficient method when calculating the electrostatic gait signal of the same kind of subjects, such as random and incomplete similarity in the trend of the scaling index spectrum change. At the same time, it can effectively quantify the correlation of electrostatic gait signals in subjects. The proposed method has the potential to be a powerful tool for extracting the gait correlation features and identifying the electrostatic gait of hemiplegic patients.

摘要

偏瘫是中风等神经系统疾病的常见后遗症之一,它会显著改变患者的步态行为,限制其日常生活活动能力。步态特征分析的结果可以为疾病诊断和康复提供参考;然而,目前步态相关性作为一种步态特征的应用还较少。在这项研究中,我们使用一种新的非接触静电场感应方法来获取偏瘫患者和健康对照者的静电步态信号,并提出了一种改进的去趋势互相关分析互相关系数方法来分析所获得的静电步态信号。结果表明,该改进方法可以更好地获取多尺度结构下的标度指数的动态变化,弥补了传统去趋势互相关分析互相关系数方法在计算同类受试者的静电步态信号时的不足,如标度指数谱变化趋势的随机性和不完全相似性。同时,它可以有效地量化受试者之间静电步态信号的相关性。该方法有望成为提取步态相关性特征和识别偏瘫患者静电步态的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c533/6603782/54180405489d/sensors-19-02529-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验