Suppr超能文献

一步稳健深度学习相位展开

One-step robust deep learning phase unwrapping.

作者信息

Wang Kaiqiang, Li Ying, Kemao Qian, Di Jianglei, Zhao Jianlin

出版信息

Opt Express. 2019 May 13;27(10):15100-15115. doi: 10.1364/OE.27.015100.

Abstract

Phase unwrapping is an important but challenging issue in phase measurement. Even with the research efforts of a few decades, unfortunately, the problem remains not well solved, especially when heavy noise and aliasing (undersampling) are present. We propose a database generation method for phase-type objects and a one-step deep learning phase unwrapping method. With a trained deep neural network, the unseen phase fields of living mouse osteoblasts and dynamic candle flame are successfully unwrapped, demonstrating that the complicated nonlinear phase unwrapping task can be directly fulfilled in one step by a single deep neural network. Excellent anti-noise and anti-aliasing performances outperforming classical methods are highlighted in this paper.

摘要

相位展开是相位测量中一个重要但具有挑战性的问题。不幸的是,即使经过几十年的研究努力,这个问题仍然没有得到很好的解决,尤其是在存在严重噪声和混叠(欠采样)的情况下。我们提出了一种针对相位型物体的数据库生成方法和一种一步式深度学习相位展开方法。通过训练有素的深度神经网络,成功地展开了活小鼠成骨细胞和动态蜡烛火焰的未知相位场,表明复杂的非线性相位展开任务可以由单个深度神经网络直接一步完成。本文突出了优于传统方法的出色抗噪声和抗混叠性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验