Wang Kaiqiang, Li Ying, Kemao Qian, Di Jianglei, Zhao Jianlin
Opt Express. 2019 May 13;27(10):15100-15115. doi: 10.1364/OE.27.015100.
Phase unwrapping is an important but challenging issue in phase measurement. Even with the research efforts of a few decades, unfortunately, the problem remains not well solved, especially when heavy noise and aliasing (undersampling) are present. We propose a database generation method for phase-type objects and a one-step deep learning phase unwrapping method. With a trained deep neural network, the unseen phase fields of living mouse osteoblasts and dynamic candle flame are successfully unwrapped, demonstrating that the complicated nonlinear phase unwrapping task can be directly fulfilled in one step by a single deep neural network. Excellent anti-noise and anti-aliasing performances outperforming classical methods are highlighted in this paper.
相位展开是相位测量中一个重要但具有挑战性的问题。不幸的是,即使经过几十年的研究努力,这个问题仍然没有得到很好的解决,尤其是在存在严重噪声和混叠(欠采样)的情况下。我们提出了一种针对相位型物体的数据库生成方法和一种一步式深度学习相位展开方法。通过训练有素的深度神经网络,成功地展开了活小鼠成骨细胞和动态蜡烛火焰的未知相位场,表明复杂的非线性相位展开任务可以由单个深度神经网络直接一步完成。本文突出了优于传统方法的出色抗噪声和抗混叠性能。