Suppr超能文献

c-MYC 的持续诱导导致原发性胰腺导管腺癌细胞对 Nab-紫杉醇产生耐药性。

The Sustained Induction of c-MYC Drives Nab-Paclitaxel Resistance in Primary Pancreatic Ductal Carcinoma Cells.

机构信息

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C.

Department of Biochemistry, Molecular and Cell Biology, Georgetown University Medical Center, Washington, D.C.

出版信息

Mol Cancer Res. 2019 Sep;17(9):1815-1827. doi: 10.1158/1541-7786.MCR-19-0191. Epub 2019 Jun 4.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with limited and, very often, ineffective medical and surgical therapeutic options. The treatment of patients with advanced unresectable PDAC is restricted to systemic chemotherapy, a therapeutic intervention to which most eventually develop resistance. Recently, nab-paclitaxel (n-PTX) has been added to the arsenal of first-line therapies, and the combination of gemcitabine and n-PTX has modestly prolonged median overall survival. However, patients almost invariably succumb to the disease, and little is known about the mechanisms underlying n-PTX resistance. Using the conditionally reprogrammed (CR) cell approach, we established and verified continuously growing cell cultures from treatment-naïve patients with PDAC. To study the mechanisms of primary drug resistance, nab-paclitaxel-resistant (n-PTX-R) cells were generated from primary cultures and drug resistance was verified , both in zebrafish and in athymic nude mouse xenograft models. Molecular analyses identified the sustained induction of in the n-PTX-R cells. Depletion of c-MYC restored n-PTX sensitivity, as did treatment with either the MEK inhibitor, trametinib, or a small-molecule activator of protein phosphatase 2a. IMPLICATIONS: The strategies we have devised, including the patient-derived primary cells and the unique, drug-resistant isogenic cells, are rapid and easily applied and platforms to better understand the mechanisms of drug resistance and for defining effective therapeutic options on a patient by patient basis.

摘要

胰腺导管腺癌 (PDAC) 是一种侵袭性很强的疾病,其治疗方法有限,而且往往效果不佳,无论是医学治疗还是手术治疗。对于无法切除的晚期 PDAC 患者的治疗仅限于全身化疗,而这种治疗方法大多数患者最终都会产生耐药性。最近,白蛋白结合型紫杉醇(nab-PTX)已被添加到一线治疗方案中,吉西他滨联合 nab-PTX 略微延长了中位总生存期。然而,患者几乎总是死于该疾病,并且对于 nab-PTX 耐药的机制知之甚少。我们使用条件重编程(CR)细胞方法,从未经治疗的 PDAC 患者中建立并验证了连续生长的细胞培养物。为了研究原发性耐药的机制,我们从原代培养物中产生了耐 nab-PTX(n-PTX-R)细胞,并在斑马鱼和免疫缺陷裸鼠异种移植模型中验证了耐药性,同时进行了分子分析。结果表明,n-PTX-R 细胞中 c-MYC 的持续诱导。c-MYC 的耗竭恢复了 n-PTX 的敏感性,MEK 抑制剂 trametinib 或蛋白磷酸酶 2a 的小分子激活剂的治疗也有同样的效果。意义:我们设计的策略,包括患者来源的原代细胞和独特的、耐药性的同基因细胞,是快速且易于应用的平台,可以更好地理解耐药机制,并为每个患者定义有效的治疗选择。

相似文献

1
The Sustained Induction of c-MYC Drives Nab-Paclitaxel Resistance in Primary Pancreatic Ductal Carcinoma Cells.
Mol Cancer Res. 2019 Sep;17(9):1815-1827. doi: 10.1158/1541-7786.MCR-19-0191. Epub 2019 Jun 4.
2
Co-treatment with gemcitabine and nab-paclitaxel exerts additive effects on pancreatic cancer cell death.
Oncol Rep. 2018 Apr;39(4):1984-1990. doi: 10.3892/or.2018.6233. Epub 2018 Jan 25.
5
KRAS pathway expression changes in pancreatic cancer models by conventional and experimental taxanes.
Mutagenesis. 2019 Dec 19;34(5-6):403-411. doi: 10.1093/mutage/gez021.
6
Screening of Conditionally Reprogrammed Patient-Derived Carcinoma Cells Identifies ERCC3-MYC Interactions as a Target in Pancreatic Cancer.
Clin Cancer Res. 2016 Dec 15;22(24):6153-6163. doi: 10.1158/1078-0432.CCR-16-0149. Epub 2016 Jul 6.
8
Macropinocytosis of Nab-paclitaxel Drives Macrophage Activation in Pancreatic Cancer.
Cancer Immunol Res. 2017 Mar;5(3):182-190. doi: 10.1158/2326-6066.CIR-16-0125. Epub 2017 Jan 20.
9
Enhancing Nab-Paclitaxel Delivery Using Microbubble-Assisted Ultrasound in a Pancreatic Cancer Model.
Mol Pharm. 2019 Sep 3;16(9):3814-3822. doi: 10.1021/acs.molpharmaceut.9b00416. Epub 2019 Aug 6.
10
SUMO pathway inhibition targets an aggressive pancreatic cancer subtype.
Gut. 2020 Aug;69(8):1472-1482. doi: 10.1136/gutjnl-2018-317856. Epub 2020 Jan 30.

引用本文的文献

1
Conditionally Reprogrammed Cells as Preclinical Model for Rare Cancers.
Cancers (Basel). 2025 Aug 29;17(17):2834. doi: 10.3390/cancers17172834.
2
Proteomics in pancreatic cancer.
Biomark Res. 2025 Jul 6;13(1):93. doi: 10.1186/s40364-025-00805-y.
4
Targeted mitochondrial therapy for pancreatic cancer.
Transl Oncol. 2025 Apr;54:102340. doi: 10.1016/j.tranon.2025.102340. Epub 2025 Mar 5.
5
Functional screen identifies RBM42 as a mediator of oncogenic mRNA translation specificity.
Nat Cell Biol. 2025 Mar;27(3):518-529. doi: 10.1038/s41556-024-01604-7. Epub 2025 Feb 4.
8
Zebrafish Congenital Heart Disease Models: Opportunities and Challenges.
Int J Mol Sci. 2024 May 29;25(11):5943. doi: 10.3390/ijms25115943.

本文引用的文献

2
KRAS Suppression-Induced Degradation of MYC Is Antagonized by a MEK5-ERK5 Compensatory Mechanism.
Cancer Cell. 2018 Nov 12;34(5):807-822.e7. doi: 10.1016/j.ccell.2018.10.001.
4
Ubiquitination by HUWE1 in tumorigenesis and beyond.
J Biomed Sci. 2018 Sep 4;25(1):67. doi: 10.1186/s12929-018-0470-0.
5
Genetic and transcriptional evolution alters cancer cell line drug response.
Nature. 2018 Aug;560(7718):325-330. doi: 10.1038/s41586-018-0409-3. Epub 2018 Aug 8.
6
The mice with human tumours: Growing pains for a popular cancer model.
Nature. 2018 Aug;560(7717):156-157. doi: 10.1038/d41586-018-05890-8.
7
PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells.
Sci Transl Med. 2018 Jul 18;10(450). doi: 10.1126/scitranslmed.aaq1093.
8
The impact of phosphatases on proliferative and survival signaling in cancer.
Cell Mol Life Sci. 2018 Aug;75(15):2695-2718. doi: 10.1007/s00018-018-2826-8. Epub 2018 May 3.
9
Dynamic changes during the treatment of pancreatic cancer.
Oncotarget. 2018 Feb 13;9(19):14764-14790. doi: 10.18632/oncotarget.24483. eCollection 2018 Mar 13.
10
Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells.
Oncogene. 2018 May;37(21):2757-2772. doi: 10.1038/s41388-018-0144-0. Epub 2018 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验