Srivastava Sarvesh Kumar, Ajalloueian Fatemeh, Boisen Anja
Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Healthcare Technology, Technical University of Denmark, 2800, Lyngby, Denmark.
Adv Mater. 2019 Jul;31(30):e1901573. doi: 10.1002/adma.201901573. Epub 2019 Jun 4.
Micromotor-mediated synthesis of thread-like hydrogel microstructures in an aqueous environment is presented. The study utilizes a catalytic micromotor assembly (owing to the presence of a Pt layer), with an on-board chemical reservoir (i.e., polymerization mixture), toward thread-like radical-polymerization via autonomously propelled bots (i.e., TRAP bots). Synergistic coupling of catalytically active Pt layer, together with radical initiators (H O and FeCl (III)), and PEGDA monomers preloaded into the TRAP bot, results in the polymerization of monomeric units into elongated thread-like hydrogel polymers coupled with self-propulsion. Interestingly, polymer generation via TRAP bots can also be triggered in the absence of hydrogen peroxide for cellular/biomedical application. The resulting polymeric hydrogel microstructures are able to entrap living cells (NIH 3T3 fibroblast cells), and are easily separable via a centrifugation or magnetic separation (owing to the presence of a Ni layer). The cellular biocompatibility of TRAP bots is established via a LIVE/DEAD assay and MTS cell proliferation assay (7 days observation). This is the first study demonstrating real-time in situ hydrogel polymerization via an artificial microswimmer, capable of enmeshing biotic/abiotic microobjects in its reaction environment, and lays a strong foundation for advanced applications in cell/tissue engineering, drug delivery, and cleaner technologies.
本文介绍了在水性环境中通过微电机介导合成线状水凝胶微结构。该研究利用了一种催化微电机组件(由于存在铂层),其带有一个机载化学储存器(即聚合混合物),通过自主推进的机器人(即TRAP机器人)进行线状自由基聚合。催化活性铂层与自由基引发剂(过氧化氢和氯化铁(III))以及预加载到TRAP机器人中的聚乙二醇二丙烯酸酯单体的协同耦合,导致单体单元聚合成与自推进相结合的细长线状水凝胶聚合物。有趣的是,在没有过氧化氢的情况下,也可以触发TRAP机器人产生聚合物,用于细胞/生物医学应用。所得的聚合物水凝胶微结构能够捕获活细胞(NIH 3T3成纤维细胞),并且可以通过离心或磁分离轻松分离(由于存在镍层)。通过活/死检测和MTS细胞增殖检测(7天观察)确定了TRAP机器人的细胞生物相容性。这是第一项通过人工微游动器证明实时原位水凝胶聚合的研究,该微游动器能够在其反应环境中捕获生物/非生物微物体,并为细胞/组织工程、药物递送和清洁技术等先进应用奠定了坚实基础。