Suppr超能文献

多模态植物图像自动配准三种方法的比较与扩展

Comparison and extension of three methods for automated registration of multimodal plant images.

作者信息

Henke Michael, Junker Astrid, Neumann Kerstin, Altmann Thomas, Gladilin Evgeny

机构信息

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany.

出版信息

Plant Methods. 2019 Apr 29;15:44. doi: 10.1186/s13007-019-0426-8. eCollection 2019.

Abstract

With the introduction of high-throughput multisensory imaging platforms, the automatization of multimodal image analysis has become the focus of quantitative plant research. Due to a number of natural and technical reasons (e.g., inhomogeneous scene illumination, shadows, and reflections), unsupervised identification of relevant plant structures (i.e., image segmentation) represents a nontrivial task that often requires extensive human-machine interaction. Registration of multimodal plant images enables the automatized segmentation of 'difficult' image modalities such as visible light or near-infrared images using the segmentation results of image modalities that exhibit higher contrast between plant and background regions (such as fluorescent images). Furthermore, registration of different image modalities is essential for assessment of a consistent multiparametric plant phenotype, where, for example, chlorophyll and water content as well as disease- and/or stress-related pigmentation can simultaneously be studied at a local scale. To automatically register thousands of images, efficient algorithmic solutions for the unsupervised alignment of two structurally similar but, in general, nonidentical images are required. For establishment of image correspondences, different algorithmic approaches based on different image features have been proposed. The particularity of plant image analysis consists, however, of a large variability of shapes and colors of different plants measured at different developmental stages from different views. While adult plant shoots typically have a unique structure, young shoots may have a nonspecific shape that can often be hardly distinguished from the background structures. Consequently, it is not clear a priori what image features and registration techniques are suitable for the alignment of various multimodal plant images. Furthermore, dynamically measured plants may exhibit nonuniform movements that require application of nonrigid registration techniques. Here, we investigate three common techniques for registration of visible light and fluorescence images that rely on finding correspondences between (i) feature-points, (ii) frequency domain features, and (iii) image intensity information. The performance of registration methods is validated in terms of robustness and accuracy measured by a direct comparison with manually segmented images of different plants. Our experimental results show that all three techniques are sensitive to structural image distortions and require additional preprocessing steps including structural enhancement and characteristic scale selection. To overcome the limitations of conventional approaches, we develop an iterative algorithmic scheme, which allows it to perform both rigid and slightly nonrigid registration of high-throughput plant images in a fully automated manner.

摘要

随着高通量多感官成像平台的引入,多模态图像分析的自动化已成为植物定量研究的重点。由于一些自然和技术原因(例如,场景光照不均匀、阴影和反射),相关植物结构的无监督识别(即图像分割)是一项重要任务,通常需要大量的人机交互。多模态植物图像的配准能够利用植物与背景区域之间对比度更高的图像模态(如荧光图像)的分割结果,对可见光或近红外图像等“困难”图像模态进行自动分割。此外,不同图像模态的配准对于评估一致的多参数植物表型至关重要,例如,可以在局部尺度上同时研究叶绿素和含水量以及与疾病和/或胁迫相关的色素沉着。为了自动配准数千张图像,需要高效的算法解决方案来对两个结构相似但通常不相同的图像进行无监督对齐。为了建立图像对应关系,已经提出了基于不同图像特征的不同算法方法。然而,植物图像分析的特殊性在于,从不同视角在不同发育阶段测量的不同植物的形状和颜色存在很大差异。虽然成年植物的嫩枝通常具有独特的结构,但嫩梢可能具有非特定形状,常常难以与背景结构区分开来。因此,事先不清楚哪些图像特征和配准技术适用于各种多模态植物图像的对齐。此外,动态测量的植物可能表现出不均匀的运动,这需要应用非刚性配准技术。在这里,我们研究了三种用于可见光和荧光图像配准的常用技术,这些技术依赖于在(i)特征点、(ii)频域特征和(iii)图像强度信息之间找到对应关系。通过与不同植物的手动分割图像进行直接比较来衡量配准方法的鲁棒性和准确性,从而验证配准方法的性能。我们的实验结果表明,这三种技术对结构图像失真都很敏感,并且需要额外的预处理步骤,包括结构增强和特征尺度选择。为了克服传统方法的局限性,我们开发了一种迭代算法方案,该方案能够以完全自动化的方式对高通量植物图像进行刚性和轻微非刚性配准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验